
Copyright UPnP Forum © 2011. All rights reserved

DeviceProtection:1 Service
For UPnP Version 1.0
Status: Standardized DCP (SDCP), Version 1.0
Date: February 24, 2011
Service Template Version: 2.00

This Standardized DCP has been adopted as a Standardized DCP by the Steering
Committee of the UPnP Forum, pursuant to Section 2.1(c)(ii) of the UPnP Forum
Membership Agreement. UPnP Forum Members have rights and licenses defined by
Section 3 of the UPnP Forum Membership Agreement to use and reproduce the
Standardized DCP in UPnP Compliant Devices. All such use is subject to all of the
provisions of the UPnP Forum Membership Agreement.

THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY
INTELLECTUAL PROPERTY RIGHTS EXIST IN THE STANDARDIZED DCPS.
THE STANDARDIZED DCPS ARE PROVIDED "AS IS" AND "WITH ALL
FAULTS". THE UPNP™ FORUM MAKES NO WARRANTIES, EXPRESS,
IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
STANDARDIZED DCPS, INCLUDING BUT NOT LIMITED TO ALL IMPLIED
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS
FOR A PARTICULAR PURPOSE, OF REASONABLE CARE OR WORKMANLIKE
EFFORT, OR RESULTS OR OF LACK OF NEGLIGENCE.

© 2011 UPnP Forum. All rights reserved.

* Note: The UPnP Forum in no way guarantees the accuracy or completeness of this author list and in no
way implies any rights for or support from those members listed. This list is not the specifications’
contributor list that is kept on the UPnP Forum’s website.

Authors * Company

Vic Lortz (Security TF Chair) Intel Corporation

Mika Saaranen (Gateway WC chair) Nokia Corporation

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 2

Contents
Contents .. 2
List of Tables .. 4
List of Figures .. 5
1 Overview and Scope ... 6

1.1 Introduction ... 6
1.1.1 Motivation for Updating the UPnP Security Framework ... 6
1.1.2 This service provides control points with the following functionality: 6
1.1.3 This service does not provide the following functionality: .. 7

1.2 Access Control Model ... 7
1.3 Notation ... 7

1.3.1 Data Types ... 8
1.4 Vendor-defined Extensions ... 8
1.5 References ... 9

1.5.1 Normative References .. 9
1.5.2 Informative References .. 10

2 Service Modeling Definitions (Normative) ... 11
2.1 Service Type ... 11
2.2 Terms and Abbreviations .. 11

2.2.1 Abbreviations ... 11
2.2.2 Terms ... 12

2.3 DeviceProtection Service Architecture ... 12
2.3.1 Device Discovery and Control Layer Security ... 13
2.3.2 Scope of DeviceProtection Access Control Policy .. 14
2.3.3 Case Sensitivity of Names ... 14
2.3.4 TLS Renegotiation Attack Protection .. 14

2.4 State Variables .. 14
2.4.1 State Variable Overview .. 14
2.4.2 SetupReady ... 14
2.4.3 SupportedProtocols .. 15
2.4.4 A_ARG_TYPE_ACL ... 16
2.4.5 A_ARG_TYPE_IdentityList .. 19
2.4.6 A_ARG_TYPE_Identity .. 20

2.5 Eventing and Moderation .. 22
2.6 Actions .. 22

2.6.1 SendSetupMessage() .. 23
2.6.2 GetSupportedProtocols() ... 24
2.6.3 GetAssignedRoles() .. 25
2.6.4 GetRolesForAction() .. 26
2.6.5 GetUserLoginChallenge() .. 27
2.6.6 UserLogin() .. 29
2.6.7 UserLogout() .. 31
2.6.8 GetACLData() .. 32
2.6.9 AddIdentityList() .. 34

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 3

2.6.10 RemoveIdentity() .. 36
2.6.11 SetUserLoginPassword() ... 37
2.6.12 AddRolesForIdentity() ... 38
2.6.13 RemoveRolesForIdentity() ... 40
2.6.14 Relationships Between Actions .. 41
2.6.15 Error Code Summary ... 42

2.7 Service Behavioral Model ... 42
3 Theory of Operation (Informative) ... 46

3.1 Determining Roles Required for Actions .. 46
3.2 Obtaining a Certificate .. 46
3.3 Obtaining Required Role(s) .. 47

3.3.1 Scenario 1: Control Point Initial Introduction for Role(s) .. 48
3.3.2 Scenario 2: Push-Putton Control Point Introduction .. 48
3.3.3 Scenario 3: Headless Control Point PIN Introduction .. 49

3.4 Indirect Control Point Introduction ... 50
3.5 Gaining Administrative Privileges .. 51
3.6 Changing User Login Passwords .. 52
3.7 Managing Roles of Identities .. 53

4 XML Service Description .. 55
Appendix A. Wi-Fi Protected Setup Introduction Protocol (Normative) ... 62
Appendix B. Security Considerations (Informative) .. 65

4.1 Discovery and Description .. 65
4.2 Control .. 66
4.3 Eventing .. 67
4.4 Presentation ... 67

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 4

List of Tables
Table 2-1: Abbreviations .. 11

Table 2-2: DeviceProtection SSDP extension header .. 13

Table 2-3: State Variables .. 14

Table 2-4: Eventing and Moderation .. 22

Table 2-5: Actions .. 22

Table 2-6: Arguments for SendSetupMessage() ... 23

Table 2-7: Error Codes for SendSetupMessage() ... 24

Table 2-8: Arguments for GetSupportedProtocols() .. 24

Table 2-9: Error Codes for GetSupportedProtocols() .. 25

Table 2-10: Arguments for GetAssignedRoles() .. 25

Table 2-11: Error Codes for GetAssignedRoles() ... 26

Table 2-12: Arguments for GetRolesForAction() .. 26

Table 2-13: Error Codes for GetRolesForAction() ... 27

Table 2-14: Arguments for GetUserLoginChallenge() .. 27

Table 2-15: Error Codes for GetUserLoginChallenge() ... 29

Table 2-16: Arguments for UserLogin() .. 29

Table 2-17: Error Codes for UserLogin() ... 31

Table 2-18: Error Codes for UserLogout() ... 31

Table 2-19: Arguments for GetACLData() .. 32

Table 2-20: Error Codes for GetACLData() ... 34

Table 2-21: Arguments for AddIdentityList() ... 34

Table 2-22: Error Codes for AddIdentityList() ... 36

Table 2-23: Arguments for RemoveIdentity() ... 36

Table 2-24: Error Codes for RemoveIdentity() ... 37

Table 2-25: Arguments for SetUserLoginPassword() .. 37

Table 2-26: Error Codes for SetUserLoginPassword() .. 38

Table 2-27: Arguments for AddRolesForIdentity() .. 39

Table 2-28: Error Codes for AddRolesForIdentity() .. 40

Table 2-29: Arguments for RemoveRolesForIdentity() .. 40

Table 2-30: Error Codes for RemoveRolesForIdentity() .. 41

Table 2-31: Error Code Summary .. 42

Table 2-32: Connection and Authentication Sequence Table .. 43

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 5

List of Figures
Figure 3-1: Default WPS-based Introduction. ... 48

Figure 3-2: Push-Button Control Point Introduction. .. 49

Figure 3-3: Headless Control Point Introduction. .. 50

Figure 3-4: Identity Data Synchronization. ... 51

Figure 3-5: Gaining Administrative Privileges. ... 52

Figure 3-6: Editing a Login Password. .. 53

Figure 3-7: Managing Roles and Identities. ... 54

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 6

1 Overview and Scope
This service definition is compliant with the UPnP Device Architecture version 1.0. It defines a service
type referred to herein as DeviceProtection.

1.1 Introduction
The DeviceProtection:1 service is intended to provide roughly equivalent functionality to UPnP Security
1.0. The goal in introducing this new service is to address a variety of issues that have inhibited
deployment of the earlier design in the industry. A brief overview of the motivation and requirements of
this specification are given below.

1.1.1 Motivation for Updating the UPnP Security Framework

The UPnP Security DCP version 1.0 was published by the UPnP Forum in November, 2003. Since that
time, product support and deployment of this standard has been extremely limited. A variety of factors
have contributed to the lack of support:

• The user experience of the setup process was considered by some as too complex and
cumbersome.

• Some of the advanced UPnP Security features depended upon security standards such as SPKI that
were not widely supported in the industry.

• The UPnP Security 1.0 model is based on a “3 box” approach, requiring presence of a Security
Console with a rich user interface. This dependency is a significant deployment obstacle.

• Lack of consensus within the UPnP Forum regarding deployment of UPnP Security increased the
risks and reduced the benefits of implementation in products.

In addition to these issues, the following developments have occurred since the 1.0 release that have been
taken into account in the new design.

• Wi-Fi networks have become prevalent in homes, and a new standard for setting them up securely
has been established. This new standard, called Wi-Fi Protected Setup [WPS], is based on a
simpler user experience than UPnP Security 1.0. The rapid adoption of WPS indicates that
manufacturers believe the user experience of WPS is acceptable to the broad market.

• The DLNA has identified several new scenarios requiring security that have increased the urgency
of developing a deployable framework for security in UPnP.

• New threats have emerged against home devices based on active attacks launched by malicious
websites through browser extensions on home PCs.

• UPnP services for remote access to UPnP networks is being standardized based on VPN
technology. This development provides an alternative approach to supporting secure remote
access to UPnP devices.

1.1.2 This service provides control points with the following functionality:
• Device and Service Description – Security-aware Control Points can securely retrieve Device and

service descriptions based on an SSDP extension header.

• Initial Introduction – Security-aware Control Points can securely introduce themselves to Devices
and thereby establish basic access privileges for their Control Point Identity.

• Device and Control Point Authentication – Device authentication to the Control Point is
accomplished via an X.509 server peer certificate exchanged in a TLS handshake. Control Point
authentication to a device is accomplished via an X.509 client peer certificate exchanged in a
TLS handshake. The certificate chains exchanged in the handshake are NOT required to be
signed by a commercial Certificate Authority with well-known keys. Instead, it is expected that

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 7

Devices and Control Points will generate their own CA certificates. The DeviceProtection
security model derives its trust basis from local peer-to-peer introduction procedures rather than
pre-configured roots of trust. A Device implementation may support a more complex model that
takes into account the certificate issuer in access control decisions. However, DeviceProtection
does not provide any mechanisms for expressing or establishing access control policies based on
trusted CAs. Therefore, access control policies based on trusted CA roots and longer certificate
chains (which would require a separate TLS handshake) are outside the scope of
DeviceProtection.

• User Authentication – A user can establish their username/password identity over a previously-
established TLS connection authenticated using Device and Control Point certificates.

• Privacy and integrity protection for SOAP services and Presentation Pages – Privacy and
integrity protection is provided at the HTTPS transport level using standard TLS.

• Examination and manipulation of access control policy – an authenticated and authorized Control
Point can read and configure a Device’s access control policy for Control Point and/or User
Identities.

• Enumeration of Roles supported by Devices – Roles are names associated with a set of access
rights. When a Role or set of Roles is assigned to a Control Point Identity or User Identity, that
identity is granted access rights associated with the Role(s).

1.1.3 This service does not provide the following functionality:
Explicit non-goals of the DeviceProtection service include:

• Platform security for UPnP devices – DeviceProtection does not address problems relating to
internal compromise of the integrity of trusted devices.

• Digital rights management – DeviceProtection does not address enforcement of copy protection
restrictions on digital media or other digital content.

• Code base trust – similar to platform security. DeviceProtection does not address problems
associated with downloading, hosting, or verifying the integrity of code that generates UPnP
messages.

• Application-specific security needs – DeviceProtection provides a set of mechanisms, but each
device or application is responsible for deciding how to apply these mechanisms to solve domain-
specific problems. For example, other UPnP DCPs may define their own specific requirements
for using DeviceProtection.

• Policing/verification of security policy enforcement.

1.2 Access Control Model
The DeviceProtection access control model is based on an access control list (ACL) that assigns Device-
specific and service-specific Roles to Control Point and User Identities. Each Device maintains its own
ACL, and there is no explicit support for automatically sharing or synchronizing ACLs across multiple
Devices. Roles correspond to permissions to perform specific SOAP actions. The required Roles to
perform an action MAY depend upon the values of arguments passed to the action. UPnP service
specifications SHOULD include documentation of RECOMMENDED Roles to perform actions, but
Devices MAY ignore those recommendations. Therefore, DeviceProtection also provides the ability to
query a Device to discover the Roles required to perform specific actions. DeviceProtection uses its own
services to prevent unauthorized modifications of the ACL.

1.3 Notation
• In this document, features are described as Required, Recommended, or Optional as follows:

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 8

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this
specification are to be interpreted as described in [RFC 2119].

In addition, the following keywords are used in this specification:

PROHIBITED – The definition or behavior is an absolute prohibition of this specification.
Opposite of REQUIRED.

CONDITIONALLY REQUIRED – The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is REQUIRED, otherwise it is
PROHIBITED.

CONDITIONALLY OPTIONAL – The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is OPTIONAL, otherwise it is
PROHIBITED.

These keywords are thus capitalized when used to unambiguously specify requirements over
protocol and application features and behavior that affect the interoperability and security of
implementations. When these words are not capitalized, they are meant in their natural-language
sense.

• Strings that are to be taken literally are enclosed in “double quotes”.

• Words that are emphasized are printed in italic.

• Keywords that are defined by the UPnP Working Committee are printed using the forum character
style.

• Keywords that are defined by the UPnP Device Architecture are printed using the arch character
style.

• A double colon delimiter, “::”, signifies a hierarchical parent-child (parent::child) relationship
between the two objects separated by the double colon. This delimiter is used in multiple contexts,
for example: Service::Action(), Action()::Argument, parentProperty::childProperty.

1.3.1 Data Types
This specification uses data type definitions from two different sources. The UPnP Device Architecture
defined data types are used to define state variable and action argument data types [DEVICE]. The XML
Schema namespace is used to define property data types [XML SCHEMA-2].

For UPnP Device Architecture defined Boolean data types, it is strongly RECOMMENDED to use the
value “0” for false, and the value “1” for true. The values “true”, “yes”, “false”, or “no” MAY also be used
but are NOT RECOMMENDED. The values “yes” and “no” are deprecated and MUST NOT be sent out
by devices but MUST be accepted on input.

For XML Schema defined Boolean data types, it is strongly RECOMMENDED to use the value “0” for
false, and the value “1” for true. The values “true”, “yes”, “false”, or “no” MAY also be used but are NOT
RECOMMENDED. The values “yes” and “no” are deprecated and MUST NOT be sent out by devices but
MUST be accepted on input.

1.4 Vendor-defined Extensions
Whenever vendors create additional vendor-defined state variables, actions or properties, their assigned
names and XML representation MUST follow the naming conventions and XML rules as specified in
[DEVICE], Section 2.5, “Description: Non-standard vendor extensions”.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 9

1.5 References

1.5.1 Normative References
This section lists the normative references used in this specification and includes the tag inside square
brackets that is used for each such reference:

[DEVICE] – UPnP Device Architecture, version 1.0, UPnP Forum, October 15, 2008.
Latest version available at: http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf.

[PKCS#5] – PKCS #5 v2.0: Password-Based Cryptography Standard, March 25, 1999.
Available at: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf.

[ISO 8601] – Data elements and interchange formats – Information interchange -- Representation of dates
and times, International Standards Organization, December 21, 2000.
Available at: ISO 8601:2000.

 [RFC 2119] – IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, S. Bradner,
March 1997.Available at: http://tools.ietf.org/html/rfc2119.

[RFC 3339] – IETF RFC 3339, Date and Time on the Internet: Timestamps, G. Klyne, Clearswift
Corporation, C. Newman, Sun Microsystems, July 2002.
Available at: http://tools.ietf.org/html/rfc3339.

[SHA-256] – FIPS Secure Hash Standard, August 1, 2002.
Available at: http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf.

[RFC 4279] – IETF RFC 4279, Pre-Shared Key Ciphersuites for Transport Layer Security (TLS), P.
Eronen, H. Tschofenig, December 2005.
Available at: http://tools.ietf.org/html/rfc4279.

[RFC 5280] – IETF RFC 5280, Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk, May
2008.
Available at: http://tools.ietf.org/html/rfc5280.

[RFC 4122] – IETF RFC 4122, A Universally Unique Identifier (UUID) URN Namespace, P. Leach, M.
Mealling, R. Salz, July 2005.
Available at: http://tools.ietf.org/html/rfc4122.

[RFC 2246] – IETF RFC 2246, The TLS Protocol Version 1.0, T. Dierks, C. Allen, January 1999.
Available at: http://tools.ietf.org/html/rfc2246.

[RFC 5746] – IETF RFC 5746, Transport Layer Security (TLS) Renegotiation Indication Extension, E.
Rescorla, M. Ray, S. Dispensa, N. Oskov, February 2010.
Available at: http://tools.ietf.org/html/rfc5746.

[RFC 3629] – IETF RFC 3629, UTF-8, a transformation of ISO 10646, F. Yergeau, November 2003.
Available at: http://tools.ietf.org/html/rfc3629.

[WPS] – Wi-Fi Protected Setup Version 1.0h, December, 2006.
Available at: http://www.wi-fi.org/wifi-protected-setup.

 [XML] – Extensible Markup Language (XML) 1.0 (Third Edition), François Yergeau, Tim Bray, Jean
Paoli, C. M. Sperberg-McQueen, Eve Maler, eds., W3C Recommendation, February 4, 2004.
Available at: http://www.w3.org/TR/2004/REC-xml-20040204.

[XML SCHEMA-2] – XML Schema Part 2: Data Types, Second Edition, Paul V. Biron, Ashok Malhotra,
W3C Recommendation, 28 October 2004.
Available at: http://www.w3.org/TR/2004/REC-xmlschema-2-20041028.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 10

1.5.2 Informative References
This section lists the informative references that are provided as information in helping understand this
specification:

[DEVICE SECURITY] – DeviceSecurity:1, UPnP Forum, November 17, 2003.
Available at: http://www.upnp.org/specs/sec/UPnP-sec-DeviceSecurity-v1-Service.pdf

[SECURITY CONSOLE] – SecurityConsole:1, UPnP Forum, November 17, 2003.
Available at: http://www.upnp.org/specs/sec/UPnP-sec-SecurityConsole-v1-Service.pdf

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 11

2 Service Modeling Definitions (Normative)

2.1 Service Type
The following service type identifies a service that is compliant with this specification:

 urn:schemas-upnp-org:service:DeviceProtection:1DeviceProtection:1

DeviceProtection service is used herein to refer to this service type.

2.2 Terms and Abbreviations

2.2.1 Abbreviations
Table 2-1: Abbreviations

Abbreviation Description

ACL Access Control List

CA X.509 Certificate Authority

CN Common Name

CP Control Point

DCP Device Control Protocol

DLNA Digital Living Network Alliance

HMAC-SHA-256 A cryptographic hash algorithm that uses a secret key

HTTPS HyperText Transfer Protocol Secured

PRF A pseudo random function

PSK Pre-Shared Key

SHA-256 A cryptographic hash algorithm

SOAP Simple Object Access Protocol

SPKI Simple Public Key Infrastructure

SSDP Simple Service Discovery Protocol

TLS Transport Layer Security [RFC 2246]

UCS Universal Character Set

UDA UPnP Device Architecture

URL Uniform Resource Locator

URN Unique Resource Name

UTF-8 UCS Transformation Format 8 bits

UUID Universally Unique IDentifier

VPN Virtual Private Network

WPS Wi-Fi Protected Setup

X.509 An ITU-T standard for a public key infrastructure. DeviceProtection
requires use of X.509v3 as specified in [RFC 5280].

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 12

Abbreviation Description

XML eXtensible Markup Langage

2.2.2 Terms

2.2.2.1 Device Identity (certificate Identity)
A Device Identity is the identity of a UPnP Device that implements the DeviceProtection service. A
Device Identity is a UUID value derived from a hash of the Device’s X.509 server peer certificate (not the
CA certificate), in accordance with the algorithm given in Section 4.3 of [RFC 4122]. See Section 2.6.8.2
of this specification for detailed information regarding deriving Device Identity UUIDs. The same UUID
value MAY be used for both the Device Identity and the normal UPnP Device UUID, but this is NOT
required.

2.2.2.2 Control Point Identity (certificate Identity)
A Control Point Identity (also referred to as its certificate Identity) is a UUID value derived from a hash of
the Control Point’s X.509 client peer certificate (not the CA certificate), in accordance with the algorithm
given in Section 4.3 of [RFC 4122]. See Section 2.6.8.2 of this specification for additional information.

2.2.2.3 Certificate Exchange
During the TLS handshake, both Control Point and Device authenticate by exchanging X.509 certificates.
Both the Device and Control Point (TLS server and client) MUST provide certificates. A complete
certificate chain with length 2 MUST be provided. This means the chain MUST include a self-signed root
certificate and either a server or client certificate (for the Device and Control Point, respectively).

The certificates MUST be X.509 v3 certificates with an RSA key of either 1024 bits or 2048 bits.

2.2.2.4 User Identity
The identity of a human user operating a Control Point. User identities consist of Username/Password
pairs.

2.2.2.5 Role
A name used to identify a set of access rights. When a Role is assigned to a Control Point Identity or User
Identity, that identity is granted access rights associated with the Role. Vendor-specific Name

A Vendor-specific Name is a name of a DeviceProtection entity such as a Role that is prefixed with a
Vendor Domain Name followed by a colon (such as “example.com:”). The Domain Name component
protects against name collisions and resulting ambiguity of interpretation.

2.2.2.6 Introduction Protocol
An Introduction Protocol is a protocol designed to support an initial exchange of cryptographic data that
can be used subsequently for secure communications.

2.2.2.7 Identity List
An Identity List is a data structure containing a list of references to Control Point and User Identities.

2.3 DeviceProtection Service Architecture
This service is designed to be embedded in any device type that exposes sensitive information or UPnP
control operations that need to be protected from unauthorized access. Other DCPs and standardization
forums (for example, the DLNA) should develop Security Considerations for DCPs to document security
risks and specify requirements associated with their services, including use of DeviceProtection. This
documentation should also specify the access control levels (Roles) required to use their functionality. The
generic DeviceProtection service defines three Roles for its own use (Public, Basic, and Admin). Other

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 13

DCPs and device vendors are free to re-use the Roles defined by DeviceProtection and/or define additional
Roles as needed. Any Control Point is implicitly considered to have role Public in addition to any other
Roles that are explicitly assigned to it.

DeviceProtection is designed to allow a device to expose some parts of its services to legacy and
unauthenticated Control Points and restrict other parts to only authenticated and authorized Control Points.
A Device can also simultaneously support both types of Control Points. UPnP actions that require
authenticated access MUST be accessible ONLY via HTTPS URLs. Publicly-available actions MUST be
accessible over both HTTPS and legacy HTTP URLs. For DeviceProtection:1, TLS version 1.0 [RFC
2246] MUST be supported. A Control Point and Device are also permitted to negotiate and use a more
recent version of TLS, if both sides support it.

2.3.1 Device Discovery and Control Layer Security
DeviceProtection does not provide any security for the SSDP protocol itself. An active attacker on the
network can make his rogue device discoverable and can try to prevent discovery of legitimate devices.
However, the DeviceProtection architecture can protect the device and service discovery and control
actions performed subsequent to SSDP.

To add security while preserving compatibility with legacy Control Points, root Devices and embedded
Devices that directly contain the DeviceProtection service MUST include the SSDP extension header
SECURELOCATION.UPNP.ORG in addition to the normal SSDP LOCATION URL. Both of these URLs
MUST point to the same device description document but with different port numbers. Relative URLs
MUST be used in the device description document, and this document MUST NOT include a URLBase
element.

If a root Device does NOT contain DeviceProtection, but an embedded Device within it does contain
DeviceProtection, then the root Device is NOT required to include SECURELOCATION.UPNP.ORG.
However, if any containing Device includes the DeviceProtection service, then all embedded Devices
within it are also required to include SECURELOCATION.UPNP.ORG, even if those embedded Devices
themselves do not include the DeviceProtection service. The DeviceProtection service and associated ACL
of the closest containing Device determines access control for the services of an embedded Device, as
described in Section 2.3.2.

The SECURELOCATION.UPNP.ORG header MUST provide a base URL with “https:” for the scheme
component and indicate the correct “port” subcomponent in the “authority” component for a TLS
connection. Because the scheme and authority components are not included in relative URLs, these
components are obtained from the base URL provided by either LOCATION or
SECURELOCATION.UPNP.ORG. Thus, the same device description document can be used for both
unsecure and secure control points.

Security-aware Control Points SHOULD use the URL from the header SECURELOCATION.UPNP.ORG
to retrieve the device description document and service description documents over TLS. Control Points
MUST use the base URL from SECURELOCATION.UPNP.ORG combined with a relative ControlURL to
invoke protected actions.

When a protected action is invoked, a Device MAY return different argument values from actions
depending upon the Role(s) currently assigned to the CP. For example, a Device MAY return different or
more complete data to a CP with administrative rights than a normal CP even though they both successfully
invoke the same action. The DeviceProtection service itself does not specify Role-dependent return values,
but other DCPs are permitted to do so.

Table 2-2: DeviceProtection SSDP extension header

Header Value Description

SECURELOCATION.UPNP.ORG Single URL Same syntax and semantics as LOCATION header
except the URL MUST have an https: prefix

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 14

2.3.2 Scope of DeviceProtection Access Control Policy
Each instance of the DeviceProtection service maintains a corresponding access control policy expressed in
an Access Control List (ACL) that applies to the DeviceProtection service and other services within the
same root Device or embedded Device. The ACL for an access-controlled service MUST be kept in the
closest DeviceProtection service in the Device hierarchy. For example, if an embedded Device contains a
DeviceProtection service, all other services in that embedded Device are governed by the ACL of that
service. If an embedded Device does not contain a DeviceProtection service, then the ACL for services in
that embedded Device MUST be placed in the closest containing Device or root Device.

2.3.3 Case Sensitivity of Names
Comparisons of the names of Protocols (such as WPS), User Identities, Passwords, and Roles are case-
sensitive.

2.3.4 TLS Renegotiation Attack Protection
TLS Version 1.0 is known to be vulnerable to a man-in-the-middle attack that uses TLS session
renegotiation to inject attack code. A technical description of the attack and mitigation approaches may be
found at http://www.kb.cert.org/vuls/id/120541 and [RFC 5746]. For DeviceProtection, the Device MUST
reject all requests for TLS renegotiation and SHOULD respond to such requests with a “no_renegotiation”
alert. Enforcing this policy will protect against the attack. In the future, it is expected that mitigation
strategies such as that described in [RFC 5746] will allow renegotiation to be safely supported again in the
TLS standard and likewise with DeviceProtection.

2.4 State Variables
Note: For first-time reader, it may be more insightful to read the theory of operations in Section 3 first
and then the action definitions before reading the state variable definitions.

2.4.1 State Variable Overview
Table 2-3: State Variables

Variable Name R/O1 Data Type Reference

SetupReady R boolean See Section 2.4.2

SupportedProtocols R string See Section 2.4.3

A_ARG_TYPE_ACL R string See Section 2.4.4

A_ARG_TYPE_IdentityList R string See Section 2.4.5

A_ARG_TYPE_Identity R string See Section 2.4.6

A_ARG_TYPE_Base64 R bin.base64

A_ARG_TYPE_String R string

1 R = REQUIRED, O = OPTIONAL, CR = CONDITIONALLY REQUIRED, CO = CONDITIONALLY
OPTIONAL, X = Non-standard, add -D when deprecated (e.g., R-D, O-D).

2.4.2 SetupReady
This evented state variable is used to signal the Control Point when the Device is ready to proceed with a
setup operation.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 15

2.4.2.1 Description
If SetupReady is 0 (false), this indicates that the device is busy or requires some user input before being
ready to proceed with a setup operation. Specific details regarding what the user should do at this point are
not indicated by SetupReady. Instead, the Control Point can obtain protocol-specific status information by
invoking SendSetupMessage(). When conditions have changed such that the Device is ready to proceed
with a setup operation, it signals this to the Control Point by changing SetupReady to 1 (true). Note that
even if SetupReady is 1 (true), this is no guarantee that the setup operation will succeed. The CP should
simply use changes in the state of SetupReady as input to help it decide when to invoke
SendSetupMessage().

If a Device determines that it is not ready to run a setup protocol that is being attempted by a CP, then it
MUST signal this situation by setting SetupReady to 0 (false). If multiple concurrent setup operations are
underway, then the value of SetupReady reflects the most recent status change corresponding to any of
those operations. This introduces a degree of ambiguity in the interpretation of SetupReady, and this
ambiguity is an intentional choice to simplify the design. The likelihood of such conflicts is expected to be
very low, and a CP MUST in any case be designed to operate correctly if SetupReady does not provide a
reliable indication of when to attempt a setup operation. The CP SHOULD only treat SetupReady as a hint
that can help it avoid polling or otherwise burdening the Device with excessive calls to
SendSetupMessage().

For example, if a CP attempts to perform a WPS introduction with a Device and receives a WPS
DeviceBusy error (NACK) via SendSetupMessage(), the CP SHOULD reflect this status in its user
interface and wait until SetupReady becomes true before trying again to run WPS. Please refer to Figure
3-3 for an example.

Note also that a CP MAY choose to ignore the value of SetupReady and use some other method (such as a
timer or user input) to decide when to invoke a setup operation.

2.4.3 SupportedProtocols

2.4.3.1 Description
This state variable is an XML document containing a list of protocols supported by the Device. Each
protocol advertised in this way consists of one or more protocol type element <Introduction> and one or
more elements <Login>, each with an embedded <Name> element. An <Introduction> element with the
<Name> element of “WPS” MUST always be included. A <Login> element with the <Name> element of
“PKCS5” MUST always be included. Additional <Introduction> and <Login> elements MAY be included.
The ordering of the sub-elements is arbitrary, and CPs MUST NOT depend upon the ordering. Note that
protocol names are case-sensitive.

Additional elements MAY also be included within <SupportedProtocols>. The ordering of the sub-
elements is arbitrary, and CPs MUST NOT depend upon the ordering.

The following example shows a generalized “template” for the format of the SupportedProtocols XML
Document. The example shows fields that need to be filled out by individual implementations in the
vendor character style.

<?xml version="1.0" encoding="UTF-8"?>
<SupportedProtocols xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">
 <Introduction><Name>WPS</Name></Introduction>
<Introduction><Name>Vendor-specific protocol</Name></Introduction>
<Login><Name>PKCS5</Name></Login>
<Login><Name>Vendor-specific protocol</Name></Login>

</SupportedProtocols>

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 16

<?xml>

OPTIONAL. Case sensitive.
<SupportedProtocols>

REQUIRED. MUST include a namespace declaration for the DeviceProtection service Common Datastructures
Schema (“urn:schemas-upnp-org:gw:DeviceProtection”). MUST include the following elements:
<Introduction>

REQUIRED. MUST appear at least once. MUST include exactly one instance of the following
element:

<Name>
REQUIRED. The format of this element is a case-sensitive name of the Introduction
protocol. The name of the default Introduction protocol defined by the Forum is WPS.
Protocol names other than names defined by the Forum MUST be Vendor-specific Names.

<Login>
REQUIRED. MUST appear at least once. MUST include exactly one instance of the following
element:

<Name>
REQUIRED. The format of this element is a case-sensitive name of the User Login protocol.
The default Login protocol name for DeviceProtection is PKCS5. Login protocol names
other than names defined by the Forum MUST be Vendor-specific Names as defined in
Section 0.

Note that since the value of SupportedProtocols is XML, it needs to be properly escaped (using the normal
XML rules: [XML] Section 2.4 Character Data and Markup) before embedding in a SOAP response
message.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<SupportedProtocols xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">
 <Introduction><Name>WPS</Name></Introduction>
<Introduction><Name>Some.org:SomeProtocol</Name></Introduction>
<Login><Name>PKCS5</Name></Login>

</SupportedProtocols>

2.4.4 A_ARG_TYPE_ACL

2.4.4.1 Description
This virtual state variable is introduced to provide type information for the ACL argument in the
GetACLData() action. This data structure encodes the access control policy of a particular Device.
Additional vendor-defined elements MAY also be included within <ACL>.

The following example shows a generalized “template” for the format of the ACL XML Document. The
example shows fields that need to be filled out by individual implementations in the vendor character style.

<?xml version="1.0" encoding="UTF-8"?>
<ACL xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">
 <Identities>
 <User>
 <Name>Name of a user</Name>
 <RoleList>List of Roles for this user</RoleList>
 </User>

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 17

 <User>
 <Name>Name of a user</Name>
 <RoleList>List of Roles for this user</RoleList>
 </User>
 <CP introduced="1">
 <Name>Name in this CP’s certificate</Name>
 <Alias>Alias for this CP</Alias>
 <ID>UUID derived from a hash of this CP’s certificate</ID>
 <RoleList>List of Roles for this CP</RoleList>
 </CP>
 <CP>
 <Name>Name in this CP’s certificate</Name>
 <ID>UUID derived from a hash of this CP’s certificate</ID>
 <RoleList>List of Roles for this CP</RoleList>
 </CP>
 </Identities>
 <Roles>
 <Role>
 <Name>Name of Role supported by this implementation</Name>
 </Role>
 <Role>
 <Name>Name of Role supported by this implementation</Name>
 </Role>
 <Role>
 <Name>Name of Role supported by this implementation</Name>
 </Role>
 </Roles>
</ACL>

<?xml>

OPTIONAL. Case sensitive.
<ACL>

REQUIRED. MUST include a namespace declaration for the DeviceProtection service Common Datastructures
Schema (“urn:schemas-upnp-org:gw:DeviceProtection”). MUST include exactly one instance of each of the
following elements:

<Identities>

REQUIRED. MUST appear exactly once. MUST include zero or more instances of the following
elements, in arbitrary order:

<User>

OPTIONAL. Includes the following sub-elements:

<Name>
REQUIRED. This element contains the name of the User. Spaces are permitted
in User names. For comparison purposes, multiple adjacent white space
characters are compressed into a single space character.

<RoleList>

REQUIRED. The format of this element is a space-separated list of Role names.
Each Name in this list MUST also be present in exactly one <Name> sub-element
of a <Role> in the <Roles> element. Spaces are NOT permitted in Role names.

<CP>

OPTIONAL. Includes the following attributes and sub-elements:

introduced
OPTIONAL. Attribute of type xsd:boolean, Indicates whether or not the CP was
introduced directly with the Device. A value of “1” (one) indicates that the CP
has been directly introduced. A value of “0” (zero) indicates that Device did
not learn about the CP’s Identity through direct pairwise introduction. If
omitted, defaults to “0”.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 18

<Name>

REQUIRED. The format of this element is a string matching that of the CP’s
certificate.

<Alias>

OPTIONAL. The format of this element is a supplemental name of the CP that
users can set without requiring changes to the CP’s certificate.

<ID>

REQUIRED. Contains a string representation of a UUID derived from a hash of
the CP’s certificate. The <ID> MUST NOT include a “uuid:” prefix.

<RoleList>

REQUIRED. The format of this element is a space-separated list of Role names.
Each Name in this list MUST also be present in the <Name> sub-element of
exactly one <Role> in the <Roles> element list.

<Roles>
REQUIRED. MUST appear exactly once. MUST include one or more of the following elements:

<Role>
REQUIRED. This element MUST contain exactly one <Name> sub-element.

<Name>
REQUIRED. This element contains the name of a Role supported by the Device. Role
names MUST NOT contain spaces. Role names not defined by the Forum MUST be prefixed,
vendor-specific Names as defined in Section 0. Forum-defined Role names MUST be
defined in service specifications and/or DCP-specific security considerations documents
published by Working Committees.Role names defined by UPnP Working Committes MUST
be prefixed with the WC moniker followed by a colon (for example, “av:”). Role names
defined by the DeviceProtection service do not include a prefix. Each Role name MUST
have length no longer than 64 characters, including the prefix (if any).

Note that since the value of A_ARG_TYPE_ACL is XML, it needs to be properly escaped (using the normal
XML rules: [XML] Section 2.4 Character Data and Markup) before embedding in a SOAP message.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<ACL xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">
 <Identities>
 <User>
 <Name>Administrator</Name>
 <RoleList>Admin</RoleList>
 </User>
 <User>
 <Name>Mika</Name>
 <RoleList>Basic</RoleList>
 </User>
 <CP introduced="1">
 <Name>ACME Widget Model XYZ</Name>
 <Alias>Mark’s Game Console</Alias>
 <ID>ad93e8f5-634b-4123-80ca-225886a5c0e8</ID>
 <RoleList>Admin Basic</RoleList>
 </CP>
 <CP>
 <Name>Some CP</Name>

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 19

 <ID>3543d8e6-3b8b-4456-81cb-f12886b5b044</ID>
 <RoleList>Public</RoleList>
 </CP>
 </Identities>
 <Roles>
 <Role><Name>Admin</Name></Role>
 <Role><Name>Basic</Name></Role>
 <Role><Name>Public</Name></Role>
 </Roles>
</ACL>

2.4.5 A_ARG_TYPE_IdentityList

2.4.5.1 Description
This virtual state variable is introduced to provide type information for various action arguments that
contain lists of DeviceProtection Identities.

The following example shows a generalized “template” for the format of the Identities XML Document.
The example shows fields that need to be filled out by individual implementations in the vendor character
style.

<?xml version="1.0" encoding="UTF-8"?>
<Identities xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">
 <User>
 <Name>Name of a user</Name>
 </User>
 <CP introduced="1">
 <Name>Name in this CP’s certificate</Name>
 <Alias>Alias for this CP</Alias>
 <ID>UUID derived from a hash of this CP’s certificate</ID>
 </CP>
 <CP>
 <Name>Name in this CP’s certificate</Name>
 <ID>UUID derived from a hash of this CP’s certificate</ID>
 </CP>
</Identities>

<?xml>

OPTIONAL. Case sensitive.

<Identities>
REQUIRED. MUST include a namespace declaration for the DeviceProtection service Common Datastructures
Schema (“urn:schemas-upnp-org:gw:DeviceProtection”). MUST include zero or more instances of the
following elements, in arbitrary order:

<User>

OPTIONAL. MUST include exactly one instance of the following elements:

<Name>
REQUIRED. This element contains the name of the User. Spaces are permitted in User
names. For comparison purposes, multiple adjacent white space characters are
compressed into a single space character.

<CP>

OPTIONAL. Includes the following attributes and sub-elements:

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 20

introduced
OPTIONAL. xsd:boolean, Indicates whether or not the CP was introduced directly with the
Device. A value of “1” (one) indicates that the CP has been directly introduced. A value of
“0” (zero) indicates that Device did not learn about the CP’s Identity through direct
pairwise introduction. If omitted, defaults to “0”.

<Name>
REQUIRED. The format of this element is a string matching that of the CP’s certificate.

<Alias>
OPTIONAL. The format of this element is a supplemental name of the CP that users can set
without requiring changes to the CP’s certificate.

<ID>

REQUIRED. Contains a string representation of a UUID corresponding to a hash of the CP’s
certificate. No “uuid:” prefix is used in the content of the <ID> element.

Note that since the value of A_ARG_TYPE_IdentityList is XML, it needs to be properly escaped (using the
normal XML rules: [XML] Section 2.4 Character Data and Markup) before embedding in a SOAP response
message.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<Identities xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">
 <User>
 <Name>Administrator</Name>
 </User>
 <User>
 <Name>Mika</Name>
 </User>
 <CP introduced="1">
 <Name>ACME Widget Model XYZ</Name>
 <Alias>Mark’s Game Console</Alias>
 <ID>ad93e8f5-634b-4123-80ca-225886a5c0e8</ID>
 </CP>
 <CP>
 <Name>Some CP</Name>
 <ID>3543d8e6-3b8b-4456-81cb-f12886b5b044</ID>
 </CP>
</Identities>

2.4.6 A_ARG_TYPE_Identity

2.4.6.1 Description
This virtual state variable is introduced to provide type information for various action arguments that
contain a reference to a DeviceProtection Identity.

The following example shows a generalized “template” for the format of the Identity XML Document. The
example shows fields that need to be filled out by individual implementations in the vendor character style.

<?xml version="1.0" encoding="UTF-8"?>
<Identity xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 21

 <User>
 <Name>Name of a user</Name>
 </User>
</Identity>

or

<?xml version="1.0" encoding="UTF-8"?>
<Identity xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">
 <CP>
 <ID>UUID of the CP’s certificate</ID>
 </CP>
</Identity>

<?xml>

OPTIONAL. Case sensitive.
<Identity>

REQUIRED. MUST include a namespace declaration for the DeviceProtection service Common Datastructures
Schema (“urn:schemas-upnp-org:gw:DeviceProtection”). MUST include exactly one instance of only one of
the following elements:

<User>

OPTIONAL. MUST include the following element:

<Name>
REQUIRED. This element contains the name of the User. Spaces are permitted in User
names. For comparison purposes, multiple adjacent white space characters are
compressed into a single space character.

<CP>

OPTIONAL. MUST include the following element:

<ID>

REQUIRED. Contains a string representation of a UUID corresponding to a hash of the CP’s
certificate.

Note that since the value of A_ARG_TYPE_Identity is XML, it needs to be properly escaped (using the
normal XML rules: [XML] Section 2.4 Character Data and Markup) before embedding in a SOAP response
message.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<Identity xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">
 <User>
 <Name>Administrator</Name>
 </User>
</Identity>

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 22

2.5 Eventing and Moderation
Table 2-4: Eventing and Moderation

Variable Name Evented Moderated Criteria

SetupReady YES NO

SupportedProtocols NO NO

2.6 Actions
Table 2-5Table 2-5 lists the SOAP actions of DeviceProtection. Some of these actions are restricted to
authenticated Control Points having the Basic and/or Admin Role. The RECOMMENDED Role required
for each action is indicated in the table. Device manufacturers are permitted to establish different required
Roles for actions, if they choose. Control Points can query the Roles required for specific actions in
DeviceProtection or in other UPnP services by calling GetRolesForAction().

Table 2-5: Actions

Name
Device
R/O1

Control Point
R/O2

Recommended
RoleList3

Recommended
RestrictedRoleList4

SendSetupMessage() R R Public

GetSupportedProtocols() R R Public

GetAssignedRoles() R R Public

GetRolesForAction() O O Basic or Admin Public

GetUserLoginChallenge() O O Basic or Admin Public

UserLogin() O O Basic or Admin Public

UserLogout() O O Public

GetACLData() O O Basic or Admin Public

AddIdentityList() O O Basic or Admin

RemoveIdentity() O O Admin

SetUserLoginPassword() O O Admin Basic

AddRolesForIdentity() O O Admin

RemoveRolesForIdentity() O O Admin

... ...

1 For a device this column indicates whether the action MUST be implemented or not, where R =
REQUIRED, O = OPTIONAL, CR = CONDITIONALLY REQUIRED, CO = CONDITIONALLY
OPTIONAL, X = Non-standard, add -D when deprecated (e.g., R-D, O-D).
2 For a control pont this column indicates whether a control point MUST be capable of invoking this action,
where R = REQUIRED, O = OPTIONAL, CR = CONDITIONALLY REQUIRED, CO =
CONDITIONALLY OPTIONAL, X = Non-standard, add -D when deprecated (e.g., R-D, O-D).
3 The RoleList contains Roles that are authorized to invoke the corresponding action in all contexts.
4 The RestrictedRoleList contains Roles that are authorized to invoke the corresponding action only in
certain contexts. For example, SetUserLoginPassword() can be invoked with the Role Basic only if the
Control Point’s currently logged-in user matches the Name argument.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 23

2.6.1 SendSetupMessage()
This action is a generic and extensible transport for pairwise introduction protocols. By providing this
generic transport, new introduction protocols can be added in the future without requiring modification of
the DeviceProtection SOAP interface.

2.6.1.1 Arguments
Table 2-6: Arguments for SendSetupMessage()

Argument Direction relatedStateVariable

ProtocolType IN A_ARG_TYPE_String

InMessage IN A_ARG_TYPE_Base64

OutMessage OUT A_ARG_TYPE_Base64

2.6.1.2 ProtocolType
This argument is a string that identifies the protocol type for messages exchanged in InMessage and
OutMessage. The ProtocolType value MUST match the value of a single <Name> contained in the
SupportedProtocols state variable. When the default WPS-based introduction protocol of DeviceProtection
is used, ProtocolType is set to the UTF-8 encoded string “WPS”. For information regarding how to use
SendSetupMessage() with the WPS protocol, refer to Appendix A and Sections 3.3.1 and 3.3.2.

2.6.1.3 InMessage
This argument contains a Base64-encoded binary message of type indicated in ProtocolType sent from the
Control Point to the Device.

2.6.1.4 OutMessage
This argument contains a Base64-encoded binary message of type indicated in ProtocolType sent from the
Device to the Control Point.

2.6.1.5 Service Requirements
Service requirements depend upon the specific setup protocol. Requirements related to the WPS protocol
are documented in Appendix A.

2.6.1.6 Control Point Requirements When Calling The Action
The RECOMMENDED Role to invoke this action is Public. Other Control Point requirements depend
upon the specific setup protocol. If the WPS protocol is used, the Control Point MUST support both the
PIN method and the PushButton method, as documented in Appendix A.

2.6.1.7 Dependency on Device State
Dependencies on device state depend upon the specific setup protocol. Some implementations MAY
impose a limit of only a single instance of a given setup protocol at a given time. For this reason, a Device
MAY respond with a Busy error if it is unable to accommodate a request for a new setup exchange.

2.6.1.8 Effect on Device State
Ordinarily, an introduction protocol such as WPS will involve a sequence of message exchanges spanning
several invocations of SendSetupMessage() . A Device MAY support multiple concurrent setup operations
with different CPs, but this is not required. If a Device supports only a single setup operation at a time, it
MUST update its SetupReady state variable to indicate when that operation is complete, and it is available
for setup with another CP. If the introduction protocol completes successfully, the Device MUST assign a
Role to the CP’s Identity and add that Identity to the Device’s ACL structure.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 24

2.6.1.9 Errors
Table 2-7: Error Codes for SendSetupMessage()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600 Argument Value
Invalid

The ProtocolType value is not supported by the Device.

704 Processing Error An error was encountered in processing InMessage. More detailed
error information MAY be provided inside OutMessage, if the
setup protocol defines detailed error messages.

708 Busy The Device is busy and unable to process the request. A
SetupReady(1) event will be signaled when it is no longer busy.

2.6.2 GetSupportedProtocols()
This action is used to retrieve a list of setup protocols supported by the Device.

2.6.2.1 Arguments
Table 2-8: Arguments for GetSupportedProtocols()

Argument Direction relatedStateVariable

ProtocolList OUT SupportedProtocols

2.6.2.2 ProtocolList
ProtocolList is an XML document conformant to the same schema as the SupportedProtocols state
variable. For more information on this argument, please refer to Section 2.4.3.
The minimum required value for ProtocolList is:
<?xml version="1.0" encoding="UTF-8"?>
<SupportedProtocols xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">
<Introduction><Name>WPS</Name></Introduction>
<Login><Name>PKCS5</Name></Login>

</SupportedProtocols>

2.6.2.3 Service Requirements
Devices implementing the DeviceProtection:1 service MUST include at least the mandatory default values.
Devices MAY also include additional vendor-specific protocols, with Vendor-specific Names.

2.6.2.4 Control Point Requirements When Calling The Action
The RECOMMENDED Role to invoke this action is Public.

2.6.2.5 Dependency on Device State
None.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 25

2.6.2.6 Effect on Device State
None.

2.6.2.7 Errors
Table 2-9: Error Codes for GetSupportedProtocols()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

2.6.3 GetAssignedRoles()
This action is used to retrieve the list of Roles that the Device has currently assigned to the Control Point.
The list includes the union of Roles assigned to the Control Point Identity plus any Roles assigned to the
currently logged-in user (if any).

2.6.3.1 Arguments
Table 2-10: Arguments for GetAssignedRoles()

Argument Direction relatedStateVariable

RoleList OUT A_ARG_TYPE_String

2.6.3.2 RoleList
This argument contains a space-separated list of Roles currently assigned to the Control Point. For
example, “Admin” or “Admin Basic”.

Role names other than those names defined in a standard Forum DCP MUST be Vendor-specific Names
encoded in UTF-8 [RFC 3629] as defined in Section 0. For example: “Some.org:SomeRole”.

If GetAssignedRoles() is called outside of an TLS connection, or if it is called by a Control Point whose
Certificate is unknown by the Device, then RoleList MUST include the value “Public” and MUST NOT
include the Roles “Basic” or “Admin”.

2.6.3.3 Service Requirements
None.

2.6.3.4 Control Point Requirements When Calling The Action
The RECOMMENDED Role to invoke this action is Public.

2.6.3.5 Dependency on Device State
None.

2.6.3.6 Effect on Device State
None.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 26

2.6.3.7 Errors
Table 2-11: Error Codes for GetAssignedRoles()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

2.6.4 GetRolesForAction()
This action is used to query which Roles a Device requires a Control Point to have in order to perform a
specified action. In some cases, the required Roles MAY depend upon the argument values that will be
passed to the action . Threfore, GetRolesForAction() returns two lists of Roles. The first list, RoleList,
contains Roles that are granted access regardless of argument values. The second list, RestrictedRoleList,
returns Roles that are granted conditional access, depending upon the arguments. The specific argument
dependencies are not given in the RestrictedRoleList. These dependencies will typically be documented by
the DCP of ServiceId.

2.6.4.1 Arguments
Table 2-12: Arguments for GetRolesForAction()

Argument Direction relatedStateVariable

DeviceUDN IN A_ARG_TYPE_String

ServiceId IN A_ARG_TYPE_String

ActionName IN A_ARG_TYPE_String

RoleList OUT A_ARG_TYPE_String

RestrictedRoleList OUT A_ARG_TYPE_String

2.6.4.2 DeviceUDN
This argument contains the UDN of the UPnP Device containing the service that provides the scope of
interpretation of ActionName. The DeviceUDN string is case-sensitive.

2.6.4.3 ServiceId
This argument contains the serviceId of the UPnP service providing the scope of interpretation of
ActionName. The ServiceId is case-sensitive.

2.6.4.4 ActionName
This argument contains the name of the SOAP action being queried. This name is case-sensitive.

2.6.4.5 RoleList
This argument returns a space-separated list of Roles associated with ActionName. For example, “Admin”
or “Admin Basic”. The Role names in RoleList have OR semantics. This means that a Control Point only
needs to be authorized with one of the Roles in RoleList to use the action. The Roles in RoleList are granted
access for all argument values.

2.6.4.6 RestrictedRoleList
RestrictedRoleList is similar to RoleList except that it contains Roles that allow the action to be invoked
only with certain argument values (or other conditions, as documented in the action specification). The

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 27

specific restrictions are dependent upon the security requirements and semanticas of the action, and this
information SHOULD be provided as part of the DCP-specific security documentation for that action.

2.6.4.7 Service Requirements
GetRolesForAction() MUST be invoked over a TLS connection that has been authenticated by both the CP
and Device’s X.509 certificates.

The CP certificate Identity MUST be present in the Device’s ACL.

2.6.4.8 Control Point Requirements When Calling The Action
The RECOMMENDED Roles to invoke this action are Basic or Admin, but a Control Point with Role
Public is conditionally permitted to invoke this action if its certificate Identity is present in the Device’s
ACL.

2.6.4.9 Dependency on Device State
None.

2.6.4.10 Effect on Device State
None.

2.6.4.11 Errors
Table 2-13: Error Codes for GetRolesForAction()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control, plus the values
specified below.

600 Argument Value
Invalid

DeviceUDN, ServiceId and/or ActionName are not recognized.

606 Action not
authorized

The CP does not have privileges to invoke this action.

2.6.5 GetUserLoginChallenge()
This action is used to obtain data from the Device that will be needed for a successful challenge-based
UserLogin().

2.6.5.1 Arguments
Table 2-14: Arguments for GetUserLoginChallenge()

Argument Direction relatedStateVariable

ProtocolType IN A_ARG_TYPE_String

Name IN A_ARG_TYPE_String

Salt OUT A_ARG_TYPE_Base64

Challenge OUT A_ARG_TYPE_Base64

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 28

2.6.5.2 ProtocolType
This argument is a string that identifies the protocol type for GetUserLoginChallenge. The ProtocolType
value MUST match the value of a single <Name> in a <Login> element of the SupportedProtocols state
variable. When the default UserLogin method of DeviceProtection is used, ProtocolType MUST be set to
the UTF-8 encoded string “PKCS5”.

2.6.5.3 Name
This argument contains a UTF-8 [RFC 3629] encoded user name to be authenticated. Name comparisons
are case-sensitive.

2.6.5.4 Salt
This argument returns a Base64-encoded binary value that is used to compute the Authenticator in a
subsequent UserLogin() call. A Salt value is typically combined with password data to reduce the risk of
compromise of a Device’s password file.

2.6.5.5 Challenge
This argument returns a Base64-encoded binary value to use in a subsequent call to UserLogin().

2.6.5.6 Service Requirements
GetUserLoginChallenge() MUST be invoked over a TLS connection that has been authenticated by both
the CP and Device’s X.509 certificates.

The CP certificate Identity MUST be present in the Device’s ACL.

If the Roles assigned to Identity Name include Admin, then the RECOMMENDED Role to invoke
GetUserLoginChallenge() is Basic or Admin.

The Salt and Challenge are derived as follows:

Salt = 16-octet random value used to hash Password into the STORED authentication value for each Name
in the database. Using a random Salt ensures that the STORED values associated with the same User will
be different on different Devices. This prevents a Device from using its own STORED value to
authenticate as that User on another Device.

• STORED = first 128 bits of the key T1, with T1 computed according to [PKCS#5] algorithm PBKDF2,
with PRF=HMAC-SHA-256. A separate value of STORED is kept in the Device’s password file for
each specific Name.

• T1 is defined as the exclusive-or sum of the first c iterates of PRF applied to the concatenation of the
Password, Name, Salt, and four-octet block index (0x00000001) in big-endian format. For
DeviceProtection, the value for c is 5,000. All characters in Name Password and Name MUST be
encoded in UTF-8 format [RFC 3629] prior to invoking the PRF operation.

T1 = U1 \xor U2 \xor … \xor Uc

where

U1 = PRF(Password, Name || Salt || 0x0 || 0x0 || 0x0 || 0x1)

U2 = PRF(Password, U1),

…

Uc = PRF(Password, Uc-1).

Challenge = A fresh, random 128-bit value generated by the Device for each GetUserLoginChallenge() call.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 29

2.6.5.7 Control Point Requirements When Calling The Action
The CP certificate Identity MUST be present in the Device’s ACL to invoke this action. The
RECOMMENDED Role to invoke this action is Basic or Admin, but Public is also conditionally permitted
if the Roles associated with Name do not include Admin. For example, if the CP Identity is in the ACL but
has only Public Role, the CP is not permitted to log in as Administrator.

2.6.5.8 Dependency on Device State
None.

2.6.5.9 Effect on Device State
The Device is only required to store the most recent value returned by GetUserLoginChallenge() for each
active TLS session.

2.6.5.10 Errors
Table 2-15: Error Codes for GetUserLoginChallenge()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control, plus the values
specified below.

600 Argument Value
Invalid

The Name is not recognized by the Device.

606 Action not
authorized

The CP does not have privileges to invoke this action.

2.6.6 UserLogin()
This action is used to authenticate the Control Point as a particular User. UserLogin() MUST be invoked
over TLS, and the Control Point’s certificate Identity MUST already be present in the Device’s ACL. The
duration of this authentication is limited to the lifetime of the TLS session or until UserLogout() is called.
A Device is also permitted to automatically log out a User Identity after an implementation-dependent
timeout.

If TLS Session Resumption is used, the Device MAY restore the CP’s logged-in User Identity of the prior
session. Note that the Role(s) of that User in the ACL may have been changed since the prior session. The
most recent Role list in the ACL for a User Identity MUST be used rather than Roles that were assigned to
the User Identity in the prior session.

2.6.6.1 Arguments
Table 2-16: Arguments for UserLogin()

Argument Direction relatedStateVariable

ProtocolType IN A_ARG_TYPE_String

Challenge IN A_ARG_TYPE_Base64

Authenticator IN A_ARG_TYPE_Base64

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 30

2.6.6.2 ProtocolType
This argument is a string that identifies the protocol type for UserLogin(). The ProtocolType value MUST
match the value of a single <Name> in a <Login> element of the SupportedProtocols state variable. When
the default UserLogin() method of DeviceProtection is used, ProtocolType MUST be set to the UTF-8
encoded string “PKCS5”.

2.6.6.3 Challenge
Challenge is the value previously returned by GetUserLoginChallenge().

2.6.6.4 Authenticator
Authenticator contains the Base64 encoding of the first 128 bits of HMAC-SHA-256(STORED,
Challenge || DeviceID || ControlPointID). STORED is computed by the CP using the known values
of Password and Name, and the Salt value obtained from a prior call to GetUserLoginChallenge(). The
value for STORED is computed by the CP according to the algorithm given in Section 2.6.5. Note that
Password and Name MUST be in UTF-8 format [RFC 3629], and the Salt value obtained from
GetUserLoginChallenge() MUST be converted into its 16-octet binary form in order to compute STORED.
The DeviceID and ControlPointID values included in the hash computation are the 16-octet binary
Identities (UUIDs), computed according to the algorithm given in Section 2.6.8.2, of the Device and
Control Point, respectively.

2.6.6.5 Service Requirements
UserLogin() MUST be invoked over a TLS connection that has been authenticated by the Control Point’s
X.509 certificate, and the certificate Identity MUST already be present in the Device’s ACL. The Device
also MUST verify that the Control Point Identity matches that of the prior call to
GetUserLoginChallenge().

2.6.6.6 Control Point Requirements When Calling The Action
The CP certificate Identity MUST be present in the Device’s ACL to invoke this action. The
RECOMMENDED Role to invoke this action is Basic or Admin, but Public is also conditionally permitted
if the CP Identity is in the ACL.

2.6.6.7 Dependency on Device State
None.

2.6.6.8 Effect on Device State
Successful authentication results in the active TLS session being given the Role(s) in the Device’s ACL for
the User Identity specified in the prior call to GetUserLoginChallenge(). The TLS session also retains any
Roles that are associated with the CP Identity, so UserLogin() establishes the union of Roles of the User
Identity and the CP Identity. UserLogin() MUST NOT change the persistent ACL data structure itself. If a
CP wishes to modify the Role(s) of its Certificate Identity in the Device’s ACL data structure, it MUST
first obtain Admin authorization and then use the AddRolesForIdentity() action to modify the ACL.

If a successful UserLogin() is performed with a TLS session that is already logged in as another User, an
implicit UserLogout() for the earlier UserLogin() MUST be automatically performed by the Device. Only
the most recent UserLogin() is in effect at any given time.

Once a successful call to UserLogin() is completed, the Device SHOULD free any stored state associated
with the prior call to GetUserLoginChallenge() to conserve runtime resources and prevent those values
from being reused.
If a series of unsuccessful attempts to call UserLogin() is detected (the RECOMMENDED number is five),
this may indicate an online brute-force attack against the Password. In this case, the Device SHOULD
disconnect the Control Point’s TLS connection and free any stored state information associated with that
session. This will force the Control Point to make a fresh TLS connection with a full certificate exchange
and handshake in order to continue trying to authenticate. Requiring a new handshake will significantly

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 31

increase the expense and difficulty in performing an online brute-force attack without imposing an undue
penalty in case the user has merely mistyped the password.

2.6.6.9 Errors
Table 2-17: Error Codes for UserLogin()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control, plus the values
specified below.

600 Argument Value
Invalid

The Challenge value is not recognized by the Device.

606 Action not
authorized

The CP does not have privileges to invoke this action.

701 Authentication
Failure

The login was rejected due to authentication failure (invalid
Authenticator).

2.6.7 UserLogout()
This action is used to revoke a User login and restore the Roles of the current session to the values
associated with the CP identity. If no user login is currently active, UserLogout() simply returns success.

2.6.7.1 Service Requirements
UserLogout() MUST be invoked over a TLS connection that has been authenticated by the Control Point’s
X.509 certificate.

2.6.7.2 Control Point Requirements When Calling The Action
The RECOMMENDED Role to invoke this action is Public.

2.6.7.3 Dependency on Device State
None.

2.6.7.4 Effect on Device State
The session Roles revert to the Roles of the CP’s certificate Identity in the ACL. If the CP’s certificate
Identity is not present in the ACL, UserLogout() has no effect on Device state.

2.6.7.5 Errors
Table 2-18: Error Codes for UserLogout()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 32

2.6.8 GetACLData()
This action is used to retrieve the Device’s Access Control List (ACL). Note that each ACL structure is
local to a Device. DeviceProtection does not define a network-wide ACL, although it does provide actions
such as AddIdentityList() to allow authorized Control Points to propagate Identity data from one Device’s
ACL to another.

2.6.8.1 Arguments
Table 2-19: Arguments for GetACLData()

Argument Direction relatedStateVariable

ACL OUT A_ARG_TYPE_ACL

2.6.8.2 ACL
This argument contains an XML document representing the Device’s ACL. An example is given below.

<ACL>
 <Identities>
 <User>
 <Name>Administrator</Name>
 <RoleList>Admin</RoleList>
 </User>
 <User>
 <Name>Mika</Name>
 <RoleList>Basic</RoleList>
 </User>
 <CP introduced="1">
 <Name>ACME Widget Model XYZ</Name>
 <Alias>Mark’s Game Console</Alias>
 <ID>ad93e8f5-634b-4123-80ca-225886a5c0e8</ID>
 <RoleList>Admin Basic</RoleList>
 </CP>
 <CP>
 <Name>Some CP</Name>
 <ID>3543d8e6-3b8b-4456-81cb-f12886b5b044</ID>
 <RoleList>Public</RoleList>
 </CP>
 </Identities>
 <Roles>
 <Role><Name>Admin</Name></Role>
 <Role><Name>Basic</Name></Role>
 <Role><Name>Public</Name></Role>
 </Roles>
</ACL>

The first part of the ACL lists Identities and their associated list of Roles. The second part lists the Roles
supported by the Device. In this example, we have a User named “Admin” with Role Admin. Another user
named “Mika” has Role “Basic”. Two certificate-based Control Point identities are listed next. The first
CP, with Roles “Admin” and “Basic”, has been directly introduced to the device holding this ACL (as
indicted by the introduced=”1” attribute). The second CP identity was assigned the Role “Public”. Note
that this CP does not have introduced=”1”. This means that it was added to the ACL in some other fashion
(by an internal feature of the Device or through configuration by an external CP with Admin rights).

For a Control Point identity in the <CP> element, the content of the <Name> element MUST be set to
match the CommonName (CN) of the CP’s X.509 certificate exchanged in the TLS handshake. If this

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 33

value is missing or inconsistent with the value in the certificate, the Device MUST update the ACL entry
for that Control Point Identity to match. The <Alias> element is an optional user-specified name for the
Control Point Identity. <Alias> names are not cryptographically verified or used at runtime. They are
intended only to augment or override the CP’s <Name> shown in UIs that display the ACL to the user.

The <ID> element contains the CP Identity corresponding to the CP’s peer certificate. The CP Identity is a
UUID derived from the first 128 bits of the SHA-256 hash of the CP’s X.509 certificate in accordance with
the procedure given in Section 4.3 and Appendix A of [RFC 4122], using SHA-256 instead of SHA-1.
Here is sample “C” code for computing the 16-byte binary UUID of a CP Identity using OpenSSL library
functions and a truncated SHA-256 hash. Conversion of the binary GUID value to the corresponding string
representation is not shown.

 X509 * cert = SSL_get_peer_certificate(ssl);
 unsigned char * certbuf = NULL; // NULL => library allocates memory
 int certlen = i2d_X509(cert, &certbuf); // get DER encoding for
hash
 SHA2_CTX ctx;
 unsigned char hash[SHA256_DIGEST_LENGTH];
 SHA256Init(&ctx);
 SHA256Update(&ctx, certbuf, certlen);
 SHA256Final(hash, &ctx); // Finish computing hash of cert
 // Note that we consider the cert hash to be the “name space ID”
 // and this hash is unique, so there is no need to also include a
 // name in the hash.

 // Now convert the cert hash into a name-based UUID using only
 // the first 16 bytes of the hash. Note that [RFC 4122] requires
 // a SHA-1 hash rather than SHA-256, so this procedure is
 // only partially compliant with that RFC. This change in hash
 // functions is due to concern about the strength of SHA-1 given
 // recent advances in attacks on older hash algorithms.
 uuid_t CP_Identity;
 format_uuid_v5(&CP_Identity, hash); // Finished

#define NAME_BASED_UUID_TYPE 0x5
void format_uuid_v5(uuid_t *uuid, unsigned char hash[16])
{
 unsigned char *uuid_bin = (unsigned char *) guid;
 // For consistency with RFC 4122, treat the hash input parameter
 // as a UUID in network byte order.
 memcpy(uuid_bin, hash, sizeof uuid_t);

 /* put in the variant and version bits */
 uuid_bin[6] &= 0x0F;
 uuid_bin[6] |= (NAME_BASED_UUID_TYPE << 4);
 uuid_bin[8] &= 0x3F;
 uuid_bin[8] |= 0x80;
}

2.6.8.3 Service Requirements
GetACLData() MUST be invoked over a TLS connection that has been authenticated by both the CP and
Device’s X.509 certificates.

The CP certificate Identity MUST be present in the Device’s ACL.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 34

Role names other than those names defined in a standard Forum DCP MUST be Vendor-specific Names
encoded in UTF-8 [RFC 3629] as defined in Section 0. For example: “Some.org:SomeRole”. The data in
the ACL SHOULD be stored in persistent memory so it is not lost across power cycles. If a factory reset
operation is performed, any ACL data that has been added by the user MUST be deleted.

2.6.8.4 Control Point Requirements When Calling The Action
The RECOMMENDED Role to invoke this action is Basic or Admin. A Control Point with Role Public is
conditionally permitted to invoke this action if its certificate Identity is present in the Device’s ACL.

2.6.8.5 Dependency on Device State
None.

2.6.8.6 Effect on Device State
None.

2.6.8.7 Errors
Table 2-20: Error Codes for GetACLData()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control, plus the value
specified below.

606 Action not
authorized

The CP does not have privileges to invoke this action.

2.6.9 AddIdentityList()
This action is used to add to the Device’s list of known Identities.

2.6.9.1 Arguments
Table 2-21: Arguments for AddIdentityList()

Argument Direction relatedStateVariable

IdentityList IN A_ARG_TYPE_IdentityList

IdentityListResult OUT A_ARG_TYPE_IdentityList

2.6.9.2 IdentityList
This argument contains an XML document representing the IdentityList.

<?xml version="1.0" encoding="UTF-8"?>
<Identities xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">
 <CP>
 <Name>Vendor X Device</Name>
 <Alias>Joe’s phone</Alias>
 <ID>e593d8e6-6b8b-49d9-845a-21828db570e9</ID>
 </CP>

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 35

 <User>
 <Name>Mika</Name>
 </User>
</Identities>

If a previously-unknown User name is included, then the Device SHOULD add the User name but prevent
login as that User until the associated password is provided via an internal UI or by a CP with
administrative privileges calling SetUserLoginPassword().

2.6.9.3 IdentityListResult
This output argument returns an XML document containing the Identities present in the Device’s ACL
after processing the AddIdentityList() action. A Control Point can determine which parts of IdentityList
were ignored by the Device and which parts were successfully added by comparing IdentityList with
IdentityListResult. Note that IdentityListResult MAY contain additional Identities from the ACL that were
not included in IdentityList.

<?xml version="1.0" encoding="UTF-8"?>
<Identities xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">
 <CP>
 <Name>Vendor X Device</Name>
 <Alias>My phone</Alias>
 <ID>e593d8e6-6b8b-49d9-845a-21828db570e9</ID>
 </CP>
 <CP>…</CP>
 <User>
 <Name>Mika</Name>
 </User>
</Identities>

2.6.9.4 Service Requirements
AddIdentityList() MUST be invoked over a TLS connection that has been authenticated by both the CP and
Device’s X.509 certificates.

The identity data specified in IdentityList are added to the Device’s ACL according to the requirements
specified below.

Any elements or attributes in IdentityList not supported by the Device MUST be ignored and discarded. In
particular, the introduced attribute and any Role information MUST be ignored. In other words, Devices
are not obligated to and are in fact PROHIBITED from storing identity data that they themselves do not
understand, and access permissions MUST NOT be transferred via IdentityList. Instead, any Identity added
by calling AddIdentityList() MUST be assigned an initial Role of Public. Furthermore, any data besides
the essential identifiers of the identities (<ID> and <Name> elements) should be considered as a non-
binding request that the Device assign those values rather than its usual default values. If a CP also wants
to configure access rights for other Identities that it introduces, it MUST have administrative privileges so
that it can configure those rights using AddRolesForIdentity().

If IdentityList is entirely rejected, the Device MUST return an Argument Value Invalid error. However, if
any part of IdentityList is added or is already present in the ACL (for example, one or more identities are
already present in the ACL), the Device MUST return success. In the latter case, it is possible that some of
the data in IdentityList may have been ignored or overridden. If a Control Point needs to analyze the
outcome of the action, it SHOULD examine IdentityListResult.

2.6.9.5 Control Point Requirements When Calling The Action
The RECOMMENDED Role to invoke this action is Basic or Admin.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 36

2.6.9.6 Dependency on Device State
None.

2.6.9.7 Effect on Device State
The ACL structure is updated to include the new Identities (if any).

2.6.9.8 Errors
Table 2-22: Error Codes for AddIdentityList()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control, plus the values
specified below.

600 Argument Value
Invalid

The IdentityList was entirely rejected.

606 Action not
authorized

The CP does not have privileges to invoke this action.

2.6.10 RemoveIdentity()
This action is used to remove a single CP or user name Identity from the Device’s ACL.

2.6.10.1 Arguments
Table 2-23: Arguments for RemoveIdentity()

Argument Direction relatedStateVariable

Identity IN A_ARG_TYPE_Identity

2.6.10.2 Identity
This argument contains an XML document containing a reference to the Identity to remove. For CPs, the
<ID> is used. For users, the <Name> is used. For example:

<?xml version="1.0" encoding="UTF-8"?>
<Identity xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">
 <User>
 <Name>Joe</Name>
 </User>
</Identity>

2.6.10.3 Service Requirements
RemoveIdentity() MUST be invoked over a TLS connection that has been authenticated by both the CP and
Device’s X.509 certificates.

If successful, the designated Identity element is removed from the ACL. Comparison of user <Name>
values are case sensitive.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 37

2.6.10.4 Control Point Requirements When Calling The Action
 The RECOMMENDED Role to invoke this action is Admin.

2.6.10.5 Dependency on Device State
None.

2.6.10.6 Effect on Device State
None.

2.6.10.7 Errors
Table 2-24: Error Codes for RemoveIdentity()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control, plus the values
specified below.

600 Argument Value
Invalid

The Identity is invalid or unknown.

606 Action not
authorized

The CP does not have privileges to invoke this action.

2.6.11 SetUserLoginPassword()
This action is used to modify the password data currently associated with a login user name.

2.6.11.1 Arguments
Table 2-25: Arguments for SetUserLoginPassword()

Argument Direction relatedStateVariable

ProtocolType IN A_ARG_TYPE_String

Name IN A_ARG_TYPE_String

Stored IN A_ARG_TYPE_Base64

Salt IN A_ARG_TYPE_Base64

2.6.11.2 ProtocolType
This argument is a string that identifies the protocol type for SetUserLoginPassword(). The ProtocolType
value MUST match the value of a single <Name> in a <Login> element of the SupportedProtocols state
variable. When the default SetUserLoginPassword() method of DeviceProtection is used, ProtocolType
MUST be set to the UTF-8 encoded string “PKCS5”.

2.6.11.3 Name
This argument contains the login name. Name MUST be encoded as UTF-8 [RFC 3629], and Name
comparisons are case-sensitive.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 38

2.6.11.4 Stored
This argument contains the Base64-encoded stored value that the Device SHOULD use to verify
knowledge of the Password. Stored is derived from the Name, Password, and Salt using the algorithm
described in Section 2.6.5.6. Since the Device receives only the salted and hashed value of the Password,
this makes it somewhat more difficult for the Device to masquerade as the user Identity to another Device
using the same password. However, a Device could perform a brute-force offline attack against the Stored
value to discover the underlying Password.

2.6.11.5 Salt
This argument contains the Base64-encoded stored Salt value that was used to derive Stored.

2.6.11.6 Service Requirements
SetUserLoginPassword() MUST be invoked over a TLS connection that has been authenticated by both
the CP and Device’s X.509 certificates.

The Control Point MUST either be currently logged in as the Name whose data is being set, or it MUST
have Admin privileges.

2.6.11.7 Control Point Requirements When Calling The Action
The RECOMMENDED Roles to invoke this action are Basic or Admin.

2.6.11.8 Dependency on Device State
None.

2.6.11.9 Effect on Device State
The password associated with the user name or Role name is updated.

2.6.11.10 Errors
Table 2-26: Error Codes for SetUserLoginPassword()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control, plus the values
specified below.

600 Argument Value
Invalid

The Name, Stored, or Salt are invalid.

606 Action not
authorized

The CP does not have privileges to invoke this action.

2.6.12 AddRolesForIdentity()
This action is used to modify the ACL entry for a given Identity to assign Roles to it. This action is strictly
additive. It does not implicitly delete any Roles not mentioned in the call. The resulting ACL entry for the
specified Identity is the union of the prior Role(s) and the Role(s) given to this action. Any Role values not
understood by the Device MUST be rejected with an error return value of 600.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 39

2.6.12.1 Arguments
Table 2-27: Arguments for AddRolesForIdentity()

Argument Direction relatedStateVariable

Identity IN A_ARG_TYPE_Identity

RoleList IN A_ARG_TYPE_String

2.6.12.2 Identity
This argument contains an XML document containing a reference to the Identity to modify. For CPs, the
<ID> is used. For users, the <Name> is used. For example:

<?xml version="1.0" encoding="UTF-8"?>
<Identity xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">
 <CP>
 <ID>9a43d8e6-3b8b-449d-812e-a13986b2b090</ID>
 </CP>
</Identity>
or

<?xml version="1.0" encoding="UTF-8"?>
<Identity xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">
 <User>
 <Name>Mika</Name>
 </User>
</Identity>

2.6.12.3 RoleList
This argument contains a space-separated list of Roles to be added to the ACL for that Identity. For
example, “Admin” or “Admin Basic”.

Each Role name in the list MUST be encoded in UTF-8 [RFC 3629]. Role names other than those names
defined in a standard Forum DCP MUST be Vendor-specific Names as defined in Section 0. For example:
“Some.org:SomeRole”.

2.6.12.4 Service Requirements
AddRolesForIdentity() MUST be invoked over a TLS connection that has been authenticated by both the
CP and Device’s X.509 certificates.

The Device MUST verify that the CP is authenticated and authorized. The Identity argument MUST refer
to an Identity value listed in the ACL.

2.6.12.5 Control Point Requirements When Calling The Action
The RECOMMENDED Role to invoke this action is Admin.

2.6.12.6 Dependency on Device State
None.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 40

2.6.12.7 Effect on Device State
The list of Roles associated with the given Identity is updated to include the Role names in RoleList.

2.6.12.8 Errors
Table 2-28: Error Codes for AddRolesForIdentity()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control, plus the values
specified below.

600 Argument Value
Invalid

The Identity or RoleList are invalid.

606 Action not
authorized

The CP does not have privileges to invoke this action.

2.6.13 RemoveRolesForIdentity()
This action is used modify the ACL entry for a given Identity to remove the given Roles. Any Role values
not understood by the Device MUST be rejected with an error return value of 600.

2.6.13.1 Arguments
Table 2-29: Arguments for RemoveRolesForIdentity()

Argument Direction relatedStateVariable

Identity IN A_ARG_TYPE_Identity

RoleList IN A_ARG_TYPE_String

2.6.13.2 Identity
This argument contains an XML document containing a reference to the Identity to modify. For CPs, the
<ID> is used. For users, the <Name> is used. For example:

<?xml version="1.0" encoding="UTF-8"?>
<Identity xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">
 <CP>
 <ID>9a43d8e6-3b8b-449d-812e-a13986b2b090</ID>
 </CP>
</Identity>

or…

<?xml version="1.0" encoding="UTF-8"?>
<Identity xmlns="urn:schemas-upnp-org:gw:DeviceProtection"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-upnp-org:gw:DeviceProtection
http://www.upnp.org/schemas/gw/DeviceProtection-v1.xsd">

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 41

 <User>
 <Name>Mika</Name>
 </User>
</Identity>

2.6.13.3 RoleList
This argument contains a space-separated list of Roles to be removed from the ACL for that Identity. For
example, “Admin” or “Admin Basic”.
Each Role name in the list MUST be encoded in UTF-8 [RFC 3629]. Role names other than those names
defined in a standard Forum DCP MUST be Vendor-specific Names as defined in Section 0. For example:
“Some.org:SomeRole”.

2.6.13.4 Service Requirements
RemoveRolesForIdentity() MUST be invoked over a TLS connection that has been authenticated by both
the CP and Device’s X.509 certificates.

The Device MUST verify that the CP is authenticated and authorized. If all Roles currently assigned to
Identity are removed, then the RoleList in the ACL for that Identity MUST be set to the single Role
“Public”. Any Roles present in RoleList but not present in the ACL entry of the Identity are ignored.

2.6.13.5 Control Point Requirements When Calling The Action
The RECOMMENDED Role to invoke this action is Admin.

2.6.13.6 Dependency on Device State
None.

2.6.13.7 Effect on Device State
The list of Roles associated with the given Identity is updated to remove the Role names in RoleList.

2.6.13.8 Errors
Table 2-30: Error Codes for RemoveRolesForIdentity()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control, plus the values
specified below.

600 Argument Value
Invalid

The Identity or RoleList are invalid.

606 Action not
authorized

The CP does not have privileges to invoke this action.

2.6.14 Relationships Between Actions
Some actions, such as AddRolesForIdentity(), require that the CP have administrative privileges.
UserLogin() is one method for an ordinary CP to acquire administrative privileges. For example, a CP
wishing to obtain Admin privileges could follow this procedure to obtain those privileges:

1. Perform a pairwise introduction of itself with the Device;

2. Invoke GetUserLoginChallenge() and UserLogin (), to authenticate as a user with the Admin Role
(ordinarily, there SHOULD be a User named “Administrator” with that Role).

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 42

If only temporary Admin access is needed, the CP can just perform the necessary tasks in the current TLS
session. If the CP wants to grant the Admin Role to its certificate Identity so the user would not have to log
in with a password in the future, the CP would make one additional SOAP call to configure that:

3. Invoke AddRolesForIdentity() with Identity corresponding to the CP’s certificate and
RoleList=”Admin”.

2.6.15 Error Code Summary
The following table lists error codes common to actions for this service type. If an action results in multiple
errors, the most specific error should be returned.

Table 2-31: Error Code Summary

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

700 Reserved for future extensions.

701 Authentication
Failure

The login was rejected due to authentication failure (invalid
Authenticator).

704 Processing Error An error was encountered in processing InMessage.

708 Busy The Device is busy and unable to process the request. A
SetupReady(1) event will be signaled when it is no longer busy.

Note: 800-899 Error Codes are not permitted for standard actions. See UPnP Device Architecture section
on Control for more details.

2.7 Service Behavioral Model
The following tables summarize the behaviors and state transitions of Control Points and Devices
corresponding to various DeviceProtection scenarios. The entry point of each sequence table is the
topmost state, and within each state the logical flow proceeds from top to bottom by default unless the flow
is interrupted by a “go to” indicator. Bracketed numbers or letters indicate labels that serve as reference
points for sub-states of a major state.

All of these scenarios assume that the Control Point needs to perform restricted actions requiring
DeviceProtection authentication and authorization.

The Connection and Authentication Sequence Table below specifies how Control Points and Devices
establish protected connections and configure the Role information that Devices use for access control
decisions.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 43

Table 2-32: Connection and Authentication Sequence Table

Control Point Device

STATE=INITIALIZATION

[1] Generate a self-signed CP Cert chain. The
Common Name field in the certificate is
RECOMMENDED to correspond to the physical
device containing the CP. This Cert MAY be shared
across multiple CPs and multiple accounts in the
device, or it MAY be associated with a specific login
account on the device. The Common Name SHOULD
reflect the scope of sharing of the Cert.

[a] Generate a self-signed Device Cert chain. The Common
Name field in the certificate is RECOMMENDED to
correspond to the physical device containing the UPnP
Device. This Cert MAY be shared across multiple UPnP
Devices in the physical device, or it MAY be associated with
a specific UPnP Device. The Common Name SHOULD
reflect the scope of sharing of the Cert.

[2] Perform UPnP Discovery to find Devices with
services protected by DeviceProtection that the CP
wants to use. If it finds such a Device, it proceeds to
STATE=CONNECTION.

STATE=CONNECTION

[3] If the CP has a prior TLS session with the Device,
attempt TLS session resumption. If session
resumption fails or no prior TLS session is found,
perform a full TLS handshake.

After the TLS handshake, consult the ACL and set the
Role(s) assigned to the CP’s Cert Identity in the session
state. If session resumption occurred, set the Roles to those
of the prior session (if the internal policy of the Device
supports session resumption). If the CP Cert is unknown, set
Role in session state to Public.

Call GetAssignedRoles() to determine if the CP has
the Roles required to perform desired actions. If YES,
then go to STATE= AUTHENTICATED.

If RoleList returned by GetAssignedRoles() is Public
(CP is unknown to Device), call
GetSupportedProtocols() to get the list of introduction
protocols supported by the device. Note that the CP
can skip this step if it intends to use the default
introduction protocol. The CP can then either initiate
device introduction exchange using
SendSetupMessage() or use an out of band mechanism
associated with the selected introduction protocol. If
introduction fails, then warn user and go to
STATE=CLEANUP. If introduction succeeds, call
GetAssignedRoles() again to determine the Roles
assigned to the CP. If the CP has the Roles required
to perform desired actions, then go to STATE=
AUTHENTICATED.

If introduction exchange succeeds, compute CP Identity
from Certificate hash and add it to Identities in ACL,
configure a list of Roles, and set introduction=”1” for the
Identity.

If CP requires different Roles, determine whether User
login or ACL configuration is preferred to establish
new Roles. If User login is preferred, go to
STATE=USER_LOGIN. Else, go to
STATE=CONFIGURE_ACL.

STATE=USER_LOGIN

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 44

Control Point Device

[4] [Optional] Call GetACLData() to discover User
login names that have the necessary Roles. If no such
names are found, then go to
STATE=CONFIGURE_ACL.

[5] Prompt for login information to authenticate as a
User with the required Roles. Call
GetUserLoginChallenge() and UserLogin() to
authenticate as that User.

If User Name is properly authenticated in
GetUserLoginChallenge() and UserLogin(), set the Roles of
that User in the state of the current TLS session, and
optionally add User Name to session resumption data. If too
many (e.g., five) UserLogin() authentication failures have
occurred for this session, terminate the TLS connection and
delete session resumption data.

If UserLogin() succeeds, Go to STATE=
AUTHENTICATED. Else warn user and try again
[5]. If TLS connection is terminated by the Device
(due to too many failed login attempts), go to [3]. If
Control Point decides to Cancel login with Device, go
to STATE=CLEANUP.

STATE=CONFIGURE_ACL

Check if session already has a Role enabling it to call
AddRolesForIdentity(). If so, go to [7]. Else
determine if CP is able to perform UserLogin() to gain
the desired Role (has necessary UI, etc.). If not,
optionally warn the user of an authorization error and
go to STATE=CLEANUP.

[6] Prompt for password of a User with rights to
invoke AddRolesForIdentity() (typically Admin). Call
GetUserLoginChallenge() and UserLogin() to
authenticate.

If User is properly authenticated in UserLogin(), set Role of
the current TLS session to the Roles of that User. If too
many UserLogin() authentication failures have occurred for
this session, terminate the TLS connection and delete session
resumption data.

If UserLogin() fails, warn user and try again [6]. If
TLS connection is terminated by the Device (due to
too many failed login attempts), go to [3]. If Control
Point decides to Cancel User login, go to
STATE=CLEANUP.

[7] The session now has the required Role (typically
Admin), so call AddRolesForIdentity() with the CP
Identity and the desired Role(s). Go to
STATE=AUTHENTICATED.

Verify that the session has the required Role to invoke
AddRolesForIdentity(). If so, verify the input arguments and
update the ACL accordingly. If the Identity corresponds to
an existing TLS connection, the Roles associated with the
connection MUST be updated immediately to reflect the new
values.

STATE=AUTHENTICATED

Invoke protected actions over the TLS connection. Verify the Control Point (plus user) of the TLS connection
has the Roles required to perform protected actions.

When connection is no longer needed, go to
[CLEANUP].

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 45

Control Point Device

STATE=CLEANUP

Tear down TLS connection. Optionally maintain
session resumption state for successfully authenticated
sessions.

Tear down TLS connections and only maintain session
resumption state for successfully authenticated sessions.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 46

Copyright UPnP Forum © 2011. All rights reserved

3 Theory of Operation (Informative)
The DeviceProtection service enables Devices to provide privacy and restrict access to sensitive operations
to authorized Control Points.

When a Control Point wishes to establish a protected connection with a device, it discovers the HTTPS
base URL (as described in Section 2.3.1) and initiates a TLS connection to that URL. The Device will
provide its Device certificate during the handshake and also request the Control Point’s certificate.
Retrieval of device and service description documents and any SOAP actions invoked over this connection
will be encrypted and authenticated by the TLS channel. If the Device has no prior knowledge of the
Control Point’s certificate (i.e., the hash of the certificate does not correspond to any of the <CP><ID>
values in the Device’s ACL), the connection, then the Role associated with the connection will be Public.

Trust in the certificates is established through pair-wise secure introduction or by introduction by an
authorized control point. The DeviceProtection access control model is role-based, where Devices support
a set of name-based Roles that are mapped internally in accordance with DCP and manufacturer policy
onto UPnP SOAP actions. Control Points are assigned Roles in each Device’s Access Control List.

If a Control Point discovers a Device that supports DeviceProtection, the first question to answer is whether
the Control Point needs to use any actions that require authentication and authorization. If not, then the
Control Point does not need to use DeviceProtection at all. It can simply operate as if it were a legacy
Control Point, using only those actions that the Device makes available to the role Public and that are
accessible through the normal control URL. However, if the Control Point needs to use protected actions,
then it MUST:

• Have a digital certificate;

• Have the Role(s) it needs to perform protected actions on the Device (note that the required Role may
also be dependent upon argument values);

• Establish a TLS connection with the Device;

• Invoke the desired actions.

3.1 Determining Roles Required for Actions
Each Device determines which CP Roles are authorized to invoke specific actions of its UPnP services.
DCPs that use DeviceProtection typically specify recommended Roles for their actions in a security
considerations document or section of their specification. If a DCP uses the default Roles of
DeviceProtection (i.e., Public, Basic, and Admin), it is recommended that the Role Admin be authorized for
all actions that can be invoked with Role Basic.

3.2 Obtaining a Certificate
To establish a secure connection with a Device, a Control Point must have an X.509 certificate. Ordinarily,
a Control Point’s certificate is generated by the Control Point itself. Widely-available crypto libraries such
as OpenSSL provide functions for generating and signing certificates, so it is relatively simple for a Control
Point to obtain its certificate simply by creating a self-signed root certificate and using it to sign its client
certificate. Once a client certificate is created, it is up to the Control Point implementation whether or not
to share this certificate with other Control Points within a physical device. From an administrative point of
view, it is beneficial to reduce the number of certificates whose permissions must be configured, so sharing
certificates across Control Points in the same device is encouraged. However, certificates are bound to
private keys that should not be shared across physical devices.

Note that the expiration time for the certificates should be set to a large value such as 10,000 days, which
effectively means that the certificate will not expire. Since Control Point identities are derived from the
hash of their client certificate, if the certificate expires, it will be necessary to update all ACLs that contain
the prior certificate’s hash.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 47

Copyright UPnP Forum © 2011. All rights reserved

3.3 Obtaining Required Role(s)
If a Control Point’s certificate is unknown to a Device, the Device will allow the TLS connection to be
established, but the Role assigned to that connection will be Public. This means that the Control Point will
not be trusted by the Device and will be limited to the same access rights as a legacy, unauthenticated
Control Point. Therefore, it is necessary for a Control Point’s certificate to become trusted by the Device in
order to invoke protected actions. Trust in Control Point certificates is expressed by adding a <CP>
identity element to the Device’s ACL with an <ID> matching the certificate and one or more Role values in
that CP’s <RoleList>.

There are three ways a Control Point’s identity can be added to a Device’s ACL.

• The Control Point can run an introduction protocol to obtain an initial Role(s) with that Device,
according to the vendor and/or DCP policy. After obtaining its Role(s), the Control Point can
optionally log in as Admin to modify its Roles.

• Another authorized administrative Control Point can introduce the Control Point’s identity to the
Device by calling AddIdentityList() and assign its Role(s) by calling AddRolesForIdentity().

• The Control Point can provide its certificate to the Device through a TLS handshake and wait until
the Device adds its identity to the ACL through an out-of-band mechanism (for instance, through a
Device user interface).

Of these three methods, the first one is preferred, because it can be initiated and performed directly by the
Control Point. However, the other methods may be necessary in some cases. For example, both the Control
Point and the Device may be headless, with limited I/O capabilities. In that case, an administrative Control
Point with a richer user interface will be needed to add the Control Point’s Identity and Roles to the
Device’s ACL.

The introduction process is intended to establish bi-directional trust between the Control Point and the
Device. In some cases, a Device may already have been informed about a new Control Point’s certificate
by a trusted administrative Control Point prior to encountering the new Control Point. In that case, the
Device has a basis for trusting the new Control Point, so the Device has no need to run an introduction
protocol. However, the new Control Point may decide to run an introduction protocol to establish its own
trust in the Device’s certificate. If a Device is introduced to a CP whose Identity is already in its ACL, the
introduction will typically not result in any changes to the ACL.

Once introduction has been done, it is ordinarily not necessary to perform introduction again between a
Control Point and that particular Device. However, it is always possible that a Device may be factory reset,
so a new introduction may be needed even if the Control Point believes it has already been introduced to a
Device.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 48

Copyright UPnP Forum © 2011. All rights reserved

3.3.1 Scenario 1: Control Point Initial Introduction for Role(s)
If a Control Point needs protected access to a Device, and if it has a sufficiently rich user interface to
perform direct introduction, it can follow the procedure shown in Figure 3-1 below.

Figure 3-1: Default WPS-based Introduction.

3.3.2 Scenario 2: Push-Putton Control Point Introduction
The PushButton Configuration, or PBC, method is a commonly-used WPS introduction method that
requires the user to push a setup button within a two-minute time window on each of the devices being
introduced. A Control Point can detect if a Device supports the PushButton method by examining the
ConfigMethods attribute in message M1. If the Device supports this method, the Control Point can set its
own ConfigMethods attribute to PushButton in message M2D and proceed according to the scenario shown
in Figure 3-2 below.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 49

Copyright UPnP Forum © 2011. All rights reserved

Figure 3-2: Push-Button Control Point Introduction.

3.3.3 Scenario 3: Headless Control Point PIN Introduction
In some cases, UI limitations on a Control Point prohibit entry of a Device’s PIN into the Control Point. In
these cases, the Control Point may be introduced indirectly by a richer UI Control Point, or it can be
introduced directly to a Device that is configured with a PIN from the Control Point. Figure 3-3 illustrates
the latter approach.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 50

Copyright UPnP Forum © 2011. All rights reserved

Figure 3-3: Headless Control Point Introduction.

3.4 Indirect Control Point Introduction
Indirect Control Point introduction is useful both for reducing the need to perform separate introductions of
a Control Point to all Devices on the network. To perform indirect introduction, an existing Control Point
can use AddIdentityList() to propagate Control Point identity data (but not assigned Roles) from one Device
to another. Figure 3-4 illustrates how a previously-introduced Control Point can synchronize Identity data
from one Device to another.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 51

Copyright UPnP Forum © 2011. All rights reserved

Figure 3-4: Identity Data Synchronization.
The initial call to AddIdentityList() returns the list of Identities known to Device 1. The authorized Control
Point can provide its own Identity as the input argument to AddIdentityList(), which should have no effect
on Device 1’s ACL. The purpose of this first call is to retrieve Device 1’s current list of known Identities.
This list is propagated by the authorized Control Point and merged with the Identities known to Device 2 in
the second call to AddIdentityList(). Since AddIdentityList() also returns the resulting IdentityList from
Device2’s ACL, the Trusted Control Point can now propagate Device 2’s IdentityList back to Device 1 with
a third call to AddIdentityList() to complete the synchronization. It is up to the Control Point
implementation whether to synchronize all of the Identities across both Devices or just a subset.

3.5 Gaining Administrative Privileges
If the initial Role assigned to the Control Point does not provide sufficient privileges to invoke the desired
actions, the Control Point can attempt to elevate its privilege level. One way of accomplishing this is to ask
the user to change permissions through an administrative Control Point or using an internal UI of the
Device.

However, if a Control Point itself wants to change its own access permissions, it can log in as a user such as
Administrator and follow the procedure described in Table 2-32Table 2-32 and illustrated in Figure 3-5 to
set the Roles assigned to its certificate Identity. Once administrative privileges are no longer needed, the
Control Point should either call UserLogout() or disconnect its TLS session with the Device. A Device is
also permitted to automatically perform a logout of a Control Point’s User Identity after an implementation-
dependent timeout.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 52

Copyright UPnP Forum © 2011. All rights reserved

Figure 3-5: Gaining Administrative Privileges.

3.6 Changing User Login Passwords
If a user wants to modify the password associated with a user name on a Device, it follows the procedure
illustrated in Figure 3-6. If the Control Point calling SetUserLoginPassword() has administrative
privileges, it can set the password of any user without first being logged in as that user. However, if the
Control Point has only Basic privileges, it must first be logged in as a particular user to change that user’s
password.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 53

Copyright UPnP Forum © 2011. All rights reserved

Figure 3-6: Editing a Login Password.

3.7 Managing Roles of Identities
The Roles of Identities can be managed by Control Points with Admin privileges on a Device. Figure 3-7
illustrates the procedure for managing Roles and Identities.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 54

Copyright UPnP Forum © 2011. All rights reserved

Figure 3-7: Managing Roles and Identities.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 55

Copyright UPnP Forum © 2011. All rights reserved

4 XML Service Description
<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">

 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>

 <actionList>

 <action>
 <name>SendSetupMessage</name>
 <argumentList>
 <argument>
 <name>ProtocolType</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_String
 </relatedStateVariable>
 </argument>

 <argument>
 <name>InMessage</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Base64
 </relatedStateVariable>
 </argument>

 <argument>
 <name>OutMessage</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Base64
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>

 <action>
 <name>GetSupportedProtocols</name>
 <argumentList>
 <argument>
 <name>ProtocolList</name>
 <direction>out</direction>
 <relatedStateVariable>
 SupportedProtocols
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>

 <action>
 <name>GetAssignedRoles</name>

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 56

Copyright UPnP Forum © 2011. All rights reserved

 <argumentList>
 <argument>
 <name>RoleList</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_String
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>

 <action>
 <name>GetRolesForAction</name>
 <argumentList>
 <argument>
 <name>DeviceUDN</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_String
 </relatedStateVariable>
 </argument>
 <argument>
 <name>ServiceId</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_String
 </relatedStateVariable>
 </argument>

 <argument>
 <name>ActionName</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_String
 </relatedStateVariable>
 </argument>

 <argument>
 <name>RoleList</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_String
 </relatedStateVariable>
 </argument>

 <argument>
 <name>RestrictedRoleList</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_String
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>

 <action>
 <name>GetUserLoginChallenge</name>

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 57

Copyright UPnP Forum © 2011. All rights reserved

 <argumentList>
 <argument>
 <name>ProtocolType</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_String
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Name</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_String
 </relatedStateVariable>
 </argument>

 <argument>
 <name>Salt</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Base64
 </relatedStateVariable>
 </argument>

 <argument>
 <name>Challenge</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Base64
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>

 <action>
 <name>UserLogin</name>
 <argumentList>
 <argument>
 <name>ProtocolType</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_String
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Challenge</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Base64
 </relatedStateVariable>
 </argument>

 <argument>
 <name>Authenticator</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Base64

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 58

Copyright UPnP Forum © 2011. All rights reserved

 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>

 <action>
 <name>UserLogout</name>
 </action>

 <action>
 <name>GetACLData</name>
 <argumentList>
 <argument>
 <name>ACL</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ACL
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>

 <action>
 <name>AddIdentityList</name>
 <argumentList>
 <argument>
 <name>IdentityList</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_IdentityList
 </relatedStateVariable>
 </argument>

 <argument>
 <name>IdentityListResult</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_IdentityList
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>

 <action>
 <name>RemoveIdentity</name>
 <argumentList>
 <argument>
 <name>Identity</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Identity
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>

 <action>

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 59

Copyright UPnP Forum © 2011. All rights reserved

 <name>SetUserLoginPassword</name>
 <argumentList>
 <argument>
 <name>ProtocolType</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_String
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Name</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_String
 </relatedStateVariable>
 </argument>

 <argument>
 <name>Stored</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Base64
 </relatedStateVariable>
 </argument>

 <argument>
 <name>Salt</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Base64
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>

 <action>
 <name>AddRolesForIdentity</name>
 <argumentList>
 <argument>
 <name>Identity</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Identity
 </relatedStateVariable>
 </argument>

 <argument>
 <name>RoleList</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_String
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>

 <action>

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 60

Copyright UPnP Forum © 2011. All rights reserved

 <name>RemoveRolesForIdentity</name>
 <argumentList>
 <argument>
 <name>Identity</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Identity
 </relatedStateVariable>
 </argument>

 <argument>
 <name>RoleList</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_String
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>

 </actionList>

 <serviceStateTable>

 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ACL</name>
 <dataType>string</dataType>
 </stateVariable>

 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_IdentityList</name>
 <dataType>string</dataType>
 </stateVariable>

 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Identity</name>
 <dataType>string</dataType>
 </stateVariable>

 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_String</name>
 <dataType>string</dataType>
 </stateVariable>

 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Base64</name>
 <dataType>bin.base64</dataType>
 </stateVariable>

 <stateVariable sendEvents="no">
 <name>SupportedProtocols</name>
 <dataType>string</dataType>
 </stateVariable>

 <stateVariable sendEvents="yes">
 <name>SetupReady</name>
 <dataType>boolean</dataType>

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 61

Copyright UPnP Forum © 2011. All rights reserved

 </stateVariable>

 </serviceStateTable>
</scpd>

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 62

Copyright UPnP Forum © 2011. All rights reserved

Appendix A. Wi-Fi Protected Setup Introduction Protocol
(Normative)

Wi-Fi Protected Setup [WPS] is a set of protocols developed by the Wi-Fi Alliance to simplify the setup
and configuration of home WiFi network security [WPS]. The purpose of this appendix is to document how
to use the WPS protocol as an introduction protocol for DeviceProtection.

The core protocol in WPS used to authenticate peers and protect the exchange of wireless keys and settings
is called the “Registration Protocol.” The Registration Protocol performs a Diffie-Hellman exchange and
mutually authenticates that exchange using a pre-commit and successive disclosure of knowledge of a
shared secret (the PIN or all-zero push-button code).

The WPS Registration Protocol can be transported over wireless EAP or over UPnP. For the UPnP
transport of WPS, the Wi-Fi Alliance created a vendor-specific UPnP service called WFAWLANConfig
service [WPS]. This service contains many actions that are specific to Wi-Fi devices and WLAN access
points. Two of the actions in WFAWLANConfig are used to transport of the Registration Protocol:
GetDeviceInfo() and PutMessage().

Since many of the actions in WFAWLANConfig are not needed by DeviceProtection, DeviceProtection
does not use WFAWLANConfig. Instead, DeviceProtection defines its own UPnP transport of the WPS
Registration Protocol using the action SendSetupMessage(). SendSetupMessage() is designed to be generic
and usable with other introduction protocols besides WPS. Its first IN argument is a string called
ProtocolType. If the WPS Registration Protocol is being used, ProtocolType MUST be set to the UTF-8
string “WPS”. The second IN argument of SendSetupMessage() is called InMessage. As its name suggests,
InMessage is a container for a binary input message sent to the Device. Since InMessage may be binary, it
is passed to the SOAP action as a base64-encoded string. Similarly, SendSetupMessage() has an OUT
argument called OutMessage that contains a base64-encoded output message.

The format and specific binary values transported in these argument is determined by the ProtocolType. In
the case of WPS, the introduction protocol messages exchanged by SendSetupMessage() are sequences of
binary-encoded type-length-value attributes documented in the Message Encoding and Data Element
Definitions sections of the WPS specification [WPS]. The SendSetupMessage() arguments InMessage and
OutMessage are identical (binary compatible) with the NewInMessage and NewOutMessage arguments of
the PutMessage() action of WFAWLANConfig. The cryptographic operations and state machines
associated with WPS are also documented in the WPS spec.

Special requirements for use of WPS with DeviceProtection are as follows:

• The Control Point can retrieve the message M1 from a Device by passing an empty InMessage to
SendSetupMessage(). This is equivalent to calling the WFAWLANConfig action GetDeviceInfo().

• With “normal” WPS, messages M7 and M8 of the Registration Protocol are used to exchange and
configure wireless network settings. However, configuring WLAN settings is NOT the primary
purpose or intent of DeviceProtection’s use of WPS. Therefore, the Encrypted Settings attribute
of M7 SHOULD omit the SSID, MAC Address, Authentication Type, Encryption Type, and
Network Key attributes. Likewise, the Credential attribute SHOULD be omitted from the
Encrypted Settings attribute of message M8. However, if WLAN settings are included in M7 or
M8, the Device or CP receiving the message MUST accept them and not abort the exchange due
to their presence.

• The UUID-E and UUID-R attributes in messages M1 and M2 respectively MUST be derived from
the Control Point and Device’s certificate hashes, as specified in Section 2.6.8. Furthermore, the
SendSetupMessage() exchange MUST be performed inside a TLS connection authenticated by the
certificates corresponding to those UUID values. This requirement establishes a cryptographic
binding that protects against relay and man-in-the-middle attacks.

• If the Registration Protocol completes successfully, the Device MUST add the Control Point’s
certificate Identity to its ACL and ensure that appropriate Role(s) are assigned to it according to
the Device’s DCP security requirements.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 63

Copyright UPnP Forum © 2011. All rights reserved

• If the Device has sent an M1 message indicating that it supports the Display Config Method, and
if it then receives an M2D message with the Config Method attribute set to “Keypad” and
“Display” (0x0108) and a Device Password ID with value “PIN” (0x0000), then this means the
control point is requesting the Device to generate a new random WPS PIN and show it on the
Device’s display. If the Device decides to comply with this request, it MUST send an ACK
message in OutMessage. If the Device decides to reject this request, it MUST send a NACK
message in OutMessage.

• If the Device has sent an M1 message indicating that it supports the PushButton method (i.e., bit
0x80 is set in the ConfigMethods attribute in M1), the Control Point has the option of using the
PushButton method rather than the PIN method. If the Control Point chooses to use the
PushButton method, it MUST set its ConfigMethods attribute in message M2D equal to the value
of the PushButton method (0x0080). When a Device supporting the PushButton method receives
an M2D message with the Config Methods attribute equal to 0x0080, it MUST check to see if its
own push button has been pressed within a 2-minute “walk time” interval. If the Device’s push
button has been pressed within this time window, the Device MUST return an ACK message to
indicate it is ready to continue immediately and receive the Control Point’s M2 message. If the
Device’s push button has not been pressed within this time window, the Device MUST return a
NACK message with ConfigurationError=14 (DeviceBusy) in OutMessage and (if possible)
display a prompt asking the user to press the PBC button. If the user presses the Device’s button
within a 2-minute time window after the Device sends its NACK, the Device MUST send a
SetupReady=1 event to tell the Control Point it is now ready to proceed with the setup operation.
Note that the Device MUST verify that the subsequent M2 message contains the same Nonce
values and is sent on the same TLS-protected channel as the M2D message. Furthermore, once a
setup operation has been performed successfully using the PushButton method, the Device MUST
NOT allow another Control Point to run a setup operation without the push button being pressed
again by the user. Figure 3-2 illustrates the message flow when the Device’s push button has not
yet been pressed when the Control Point attempts to run the PushButton setup method. To ensure
interoperability, DeviceProtection Control Points MUST support both PIN and PushButton
methods. Devices MUST support either PIN or PushButton or both.

• If the Device receives an M2D message with the Config Methods attribute set to “Display”
(0x0008) or “Label” (0x0004) and a Device Password ID with value “Registrar-specified”
(0x0005), then this means the PIN belongs to the Control Point (the Registrar) rather than the
Device, and the Device should prompt the user to enter the PIN using the Device’s keypad. If the
Device is willing to do this, but the Control Point’s PIN has not been entered yet, it MUST send a
NACK message in OutMessage. After the user has entered the PIN, the Device MUST send a
SetupReady event with value 1. When the Control Point sees the Device’s SetupReady event with
value 1, it SHOULD send its M2 message via SendSetupMessage() to continue running the
Registration Protocol.

• To protect against brute force online attacks, a Device and CP SHOULD NOT allow the WPS
protocol to be run with SendSetupMessage() except during a time-limited setup mode explicitly
initiated by the user. Furthermore, if a series of failures are detected that could indicate an online
attack, the Device or CP SHOULD display a warning or otherwise alert the user.

• Since a label-based PIN is very vulnerable to attack if it is Registrar-specified, a Control Point
(Registrar) MUST NOT use a label-based Registrar-specified PIN unless the user has explicitly
initiated a time-limited setup mode through an interaction such as pressing a setup button.

• A CP MUST NOT reuse a PIN value with a separate instance of the Registration Protocol once it
has sent an M4 message. If an error of any sort causes the WPS exchange to fail after sending M4,
the CP MUST (if possible) display a new PIN or request that the user input a new PIN for the next
run of the protocol.

If Wi-Fi Alliance certified WPS is used to provision a Device onto a WLAN, the WiFi WPS setup process
MAY be used to simultaneously serve as an initial introduction for UPnP DeviceProtection purposes. To
accomplish this, both the WPS Enrollee and the WPS Registrar MUST also support DeviceProtection, and

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 64

Copyright UPnP Forum © 2011. All rights reserved

they MUST provide their DeviceProtection Identity UUIDs as the UUID-E or UUID-R used in their WPS
exchange (messages M1 and M2). If both of these UUIDs are of type NAME_BASED_UUID_TYPE, then
the Enrollee and Registrar SHOULD retain these UUID values for an implementation-specific period of
time (recommended to be at least two minutes). Once an IP connection has been established for the newly-
added Device or Control Point, the Control Point SHOULD perform normal UPnP discovery and try to find
the UPnP Device with a certificate matching the UUID value obtained from the WPS exchange. If these
values match, then the Device and Control Point SHOULD configure their DeviceProtection settings
accordingly. For example, the Device SHOULD add an entry to its ACL for the Control Point Identity
with one or more initial Roles.

Note that the security properties of the WiFi WPS process described above are not identical to using
SendSetupMessage(). SendSetupMessage() runs over a previously-established TLS channel authenticated
using certificates that are required to match the WPS UUIDs. However, the WiFi WPS process does not
verify this correspondence. To comply with this DeviceProtection specification, the Control Point and
Device MUST use the UUIDs of their own certificates in the WiFi WPS exchange, but nothing in the
protocol actually verifies this cryptographically.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 65

Copyright UPnP Forum © 2011. All rights reserved

Appendix B. Security Considerations (Informative)
DeviceProtection provides a set of mechanisms designed to support mutual authentication and access
control for UPnP Device SOAP interfaces. However, simply supporting DeviceProtection does not
necessarily mean that a Device will be secure against attack. If a Device exposes sensitive resources to
legacy Control Points, then an attacker can exploit vulnerabilities present in those legacy services.
Furthermore, Devices need to appropriately protect the ACL management services so that attackers cannot
gain access by modifying the access control policy of a Device. Therefore, Devices should follow the
guidelines or requirements of DeviceProtection as well as those provided in DCP-specific security
specifications. These specifications indicate which SOAP actions should be restricted from access by
unauthenticated and legacy Control Points. Any vulnerabilities that result from inadequate specification or
implementation of DCP-specific access control policies are the responsibility of these other DCPs and are
beyond the scope of DeviceProtection.

In this appendix, we consider only the security properties of DeviceProtection itself. Since flexibility is
given to device manufacturers to depart from the security policies recommended in this specification, the
analysis given here assumes that the default policies given in this specification are indeed implemented by
the Device. For example, the recommended Role required for the AddRolesForIdentity() action is Admin.
If a Device were instead to allow Public access to this action, an attacker could easily subvert all of the
access control restrictions of the Device. In general, it is recommended that deviations from any default
security policies in DeviceProtection be in the direction of requiring higher rather than lower security.

Another issue is that it is possible for malware running in a user’s Control Point device to launch an attack
against a protected UPnP Device by injecting malicious messages into the TLS channel established by a
legitimate Control Point on the same device. The protected UPnP Device cannot distinguish such messages
from those originating from the legitimate Control Point. Therefore, to some extent the security of the
system is dependent upon the integrity of all software running on trusted Control Point devices. However,
the possibility of such devices becoming compromised is one of the primary motivations for establishing
security mechanisms for UPnP in the first place. If certain devices on their network are likely to be
compromised, users are well-advised not to grant administrative privileges to Control Points running on
those devices. Furthermore, to mitigate risk of cross-site scripting attacks injecting messages into local
TLS channels, Devices and Control Points SHOULD use random port numbers and/or randomized Control
URLs.

The remainder of this section discusses security considerations for DeviceProtection corresponding to each
layer in the UPnP architecture.

4.1 Discovery and Description
DeviceProtection does not protect SSDP messages. An attacker on the network can introduce rogue
Devices that advertise themselves to solicit Control Point connections. An active attacker can also disrupt
the delivery of SSDP messages and/or corrupt the content of SSDP queries and responses between
legitimate Control Points and Devices. This enables a “bid down” denial-of-service attack, whereby an
attacker is able to trick a Control Point into believing that a Device does not support DeviceProtection.

Although DeviceProtection is vulnerable to a denial-of-service attack during the initial discovery phase,
DeviceProtection offers protection of retrieval of device and service description documents. If a Control
Point retrieves a device description document using the URL advertised by the new
SECURELOCATION.UPNP.ORG SSDP header, that document is protected from modification. Likewise,
if the Control Point retrieves the service description documents over TLS, those documents are protected
from eavesdropping and modification. However, it is important that the Control Point subsequently
authenticate the Device’s certificate through the pairwise introduction process. Otherwise, an attacker can
substitute his own versions of these files by using SSDP to trick the Control Point into retrieving them from
a rogue server rather than the intended Device.

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 66

Copyright UPnP Forum © 2011. All rights reserved

4.2 Control
The primary goal of DeviceProtection is to protect the Control layer of UPnP. If DeviceProtection’s
recommended security policies are followed, this section discusses the resulting security properties of the
system.

Any SOAP interfaces that are exposed to unauthenticated Control Points are open to attack, so it is
important for a DCP to ensure that all security-sensitive data and operations are access-controlled by
DeviceProtection. Role-based access rights are expressed in the <RoleList> associated with each CP or
User Identity in the Device’s ACL. To properly implement this policy, a Device must authenticate Control
Points so that they are correctly mapped to the correct ACL entry, and a Device must also protect the ACL
itself from unauthorized modification.

The security model of DeviceProtection uses a pairwise introduction process between a Control Point and a
Device to establish initial trust between them. If an attacker is able to compromise the introduction
process, he will be able to gain default authenticated access to Devices, but not administrative access.
DeviceProtection also supports indirect introductions, whereby a Control Point with administrative
privileges on a Device can introduce the Identities of other Control Points and subsequently configure their
access rights. Therefore, Devices should only grant administrative privileges to Control Points that are
known to be trustworthy. For example, simply completing an ordinary WPS-based introduction should not
be considered sufficient grounds to grant a Control Point administrative rights. DeviceProtection cannot
prevent implementations from making unwise access control policy decisions, but the security of a Device
can be easily compromised if the recommended practices in this specification are ignored.

The WPS introduction protocol protects the introduction process against passive eavesdropping attacks,
but the particular sub-method of WPS that is used will determine its strength against an active attack. If the
Push-Button WPS method is used, an active attacker can trick the Device into adding a rogue Control Point
with default permissions to the Device’s ACL. The attacker can do this by running the Push-Button
method and blocking packets sent by the intended Control Point when he detects that a Device’s Push-
button has been activated. The attacker can also masquerade as the intended Device to trick the user’s
Control Point into trusting a rogue Device.

If the WPS PIN method is used with a static 8-digit PIN, an active attacker can break the PIN after running
two rounds of the protocol. The attack method in this case is slightly different. Instead of masquerading as
the user’s Control Point, the attacker introduces a rogue Device that masquerades as the user’s Device.
When the user’s Control Point attempts to run the WPS protocol with the rogue Device, the attacker sends
random values for its pre-commitment nonces in message M3. It then receives M4 and performs a brute-
force attack on the proof-of-possession of the first half of the PIN provided by the user’s Control Point.
The attacker then aborts the TLS connection instead of sending message M5. The user’s Control Point is
now in a dilemma, because it has effectively disclosed the first half of the PIN to the attacker, but it doesn’t
know if the communication problem indicates an actual attack or just an implementation bug or a user-
initiated reset of the intended Device. If it decides to re-establish a TLS connection with the Device and re-
start the WPS exchange with the same PIN (which is the only one available if it is a static PIN), the attacker
will be able to successfully generate message M5 (since he now knows the first half of the PIN) and receive
message M6 from the user’s Control Point. Upon receiving M6, the attacker will have enough information
to complete a brute-force attack on the second half of the PIN. The attacker can now launch an active
attack against the intended Device with a rogue Control Point armed with knowledge of the Device’s entire
PIN.

Although the Push-Button and static PIN WPS methods have known security vulnerabilities, some Devices
have I/O limitations that preclude the use of the more secure dynamic PIN method. Furthermore, the
system is vulnerable to the attacker only during the initial introduction. Once the introduction is
completed, stronger credentials (certificates) are used to protect subsequent communication. Therefore,
even a weak method such as the Push-Button method does offer protection against an attacker who joins
the network after the introduction process has been completed.

If the WPS PIN method is used with a dynamically-generated PIN, the protocol is believed to be secure
against active attack by an adversary provided that the Control Point does not run the WPS protocol
multiple times with the same PIN (the PIN must be discarded after each execution of the introduction

DeviceProtection:1 Service – Standardized DCP (SDCP)-February 24, 2011. 67

Copyright UPnP Forum © 2011. All rights reserved

protocol, whether it runs to completion or not). For example, if the Control Point sends its M4 message
and then does not receive a valid M5 message in response, it should refuse to re-run the protocol using the
same PIN with that Device. Instead, it should warn the user that there is a problem and ask them to restart
the introduction process on the Device so that a new PIN is generated. If the PIN is reused, the attack
against a static PIN outlined above will also succeed against a dynamic PIN.

If an attacker is able to successfully introduce a rogue Control Point to a Device, then his access at that
point will be determined by the initial Role(s) that Device assigns to new Control Points. In principle, no
other Device in the network will be compromised by a security breach on one Device. However, if an
administrative Control Point replicates the ACL entry of the attacker’s Control Point Identity onto other
Devices, then the extent of the security breach could spread.

Once an attacker has gained basic permissions on a Device, he is likely to attempt to gain administrative
privileges as well. DeviceProtection uses a password-based user login as the normal means of gaining
administrative access. The challenge-response protocol used by DeviceProtection protects against offline
attacks by a rogue Control Point since a Device does not provide any information that would enable an
attacker’s Control Point to perform an offline attack on the password. Therefore, as long as a Device
protects itself from an online brute force guessing attack (e.g., by detecting a series of failures and
eventually locking down the login interface), administrative user passwords should be relatively secure.
However, if the attacker can successfully trick the user’s Control Point into trusting a rogue Device and
attempting an administrative User login, the administrative password could be compromised by an offline
attack by the rogue Device. Once the password is compromised in this manner, the attacker can now use it
to gain administrative privileges on the legitimate Device for his own Control Point.

Another method for an attacker’s Control Point to gain administrative privileges is to trick the user into
explicitly assigning the Admin Role to the Control Point’s Identity in the ACL. For example, the attacker’s
Control Point can read the ACL and thereby discover other Control Point Identities that already have the
Admin Role. It can then duplicate one of those names in its own certificate. If the attacker can
successfully introduce its Control Point to that Device, this will result in an Identity being added to the
ACL with the same name as an existing Identity that already has the Admin Role (or to which the user
eventually intends to assign the Admin Role). In this manner, the attacker’s Control Point may mistakenly
be given Admin rights by the user.

In conclusion, the strength of Control layer security provided by DeviceProtection fundamentally depends
upon the methods used to introduce Devices and Control Points to each other. Since DeviceProtection
supports a decentralized, per-Device access control model, compromise of a single Device’s security does
not automatically mean compromise of an entire network of UPnP Devices.

4.3 Eventing
DeviceProtection does not provide any direct protection for the Eventing layer of UPnP. However, it is
possible to use an unprotected event to simply indicate that a protected state variable has changed. The
Control Point can then query the value of the state variable over a SOAP interface to retrieve the content of
that state variable over a protected channel. This approach is sub-optimal because an additional round-trip
is required, and a SOAP interface for retrieving the state variable must be provided. However, until a more
complete solution for protected Eventing is defined, this approach may be sufficient in some cases.

4.4 Presentation
DeviceProtection does not provide any protection for the Presentation layer of UPnP. Of course, the X.509
certificates and TLS connections provided by DeviceProtection could be used to protect Presentation web
pages. The difficulty in following this approach is that legacy browsers are not configured to trust self-
signed certificates. Furthermore, adding such certificates into the set of trusted certificates of a browser
may introduce vulnerabilities to certain types of phishing attacks, where an attacker’s device tricks the user
into configuring their browser to trust a certificate that a rogue web server later uses to pose as an e-
commerce or online banking site. Because of the usability and security challenges associated with
installing locally-trusted certificates into legacy browsers, DeviceProtection makes no explicit claim to
protect the UPnP Presentation layer.

